In der Abbildung sehen wir, dass auf der Himmelsscheibe die Tierkreissterne nicht exakt vor den Enden der Horizontbögen platziert wurden.
Das hat zwei Hauptgründe:
Wie erwähnt stehen zu den Solstitien und Äquinoktien die Sterne nur in der Nähe der vier markanten Punkte der Ekliptik. Dadurch können die Auf-und Untergangsorte der Sonne von denen der benachbarten Sterne abweichen.
Zudem arbeiten die Computersternenkarten mit einer flachen Horizonteben. Es existiert rundum keine Erhebung, während der Beobachter solche Bedingungen nur am Meer vorfindet. Allerdings befinden sich am Horizontkreis stets Unregelmäßigkeiten, die durch die dreidimensionalen Landschaftsformen, wie Berge und Täler, entstehen. Eine Erhöhung des Reliefs würde die Orte der Sichtbarwerdung oder des Erlöschens weiter südlich verschieben. Bei einer Vertiefung verhält es sich andersherum.
Aus diesen Gründen kann die Position der in der Computerarte an den vier Jahreseckpunkten dargestellten Sterne nicht mit den goldenen Applikationen der Himmelsscheibe übereinstimmen.
Man muss den Herstellungsort der Himmelsscheibe und die dort vorherrschenden Höhenunterschiede am Horizontkreis kennen! Erst dann kann man die Positionen der Tierkreissterne am Horizont mit der Anordnung der Sternenplättchen vor den Horizontbögen vergleichen.
Aber trotz der unbekannten Geländeformationen am Ursprungsort wird es sich mit sehr großer Wahrscheinlichkeit um jene Sterne handeln.
Die Lichtbrechung in unserer Lufthülle versetzt horizontnahe Auf- und Untergänge der Sonne nach Norden
Ein weiterer Grund warum die Sterne nicht vor Enden der Horizontbögen angebracht wurden
Wolfhard Schlosser hat festgestellt, „dass der Mittelpunkt der Scheibe die Horizontbögen etwas asymmetrisch erscheinen lässt. Und zwar so, dass der goldfreie Sektor in Richtung Sonnenbarke [nach Süden; der Winkel von M nach A und B] 5-6 Grad größer ist als in entgegengesetzter Richtung. Dies ist auch zu erwarten, wenn vom Beobachtungsort aus der obere Sonnenrand am Horizont und nicht der untere als Sonnenauf- oder -untergang verstanden wurde.
Wäre die Sonne punktförmig und hätte die Erde keine Atmosphäre, so lägen die Punkte A-D (= die Enden der beiden Horizontbögen) exakt symmetrisch zur Scheibenmitte. Die Lichtbrechung in unserer Lufthülle – die dem bronzezeitlichen Menschen sicher unbekannt war , aber in allen Beobachtungen enthalten sein muss – versetzt jeden dieser vier Punkte um etwa ein Grad nach Norden, der obere Sonnenrand um ein weiteres halbes Grad“ (Schlosser, 20081Schlosser, Wolfhard. Die Himmelsscheibe von Nebra – Astronomische Untersuchungen. Der geschmiedete Himmel. Herausgeber Harald Meller. Seite 45-46).
Die astronomische Refraktion
„Bei Sonnenuntergang ist der obere Rand der Sonne auch dann noch sichtbar, wenn sie bereits komplett unterhalb des Horizonts steht – ein Ergebnis der astronomischen Refraktion. Entscheidend für die Refraktion, die Brechung des Lichts, ist der Übergang eines Lichtstrahls von einem Medium zu einem anderen. Das Medium ist der Stoff, das Material, durch den sich der Strahl fortbewegt – zum Beispiel Luft, Wasser, Glas oder ein Vakuum. Jedes dieser Medien …” (time and date).
Für die Untersuchung der Tierkreissterne spielt die Lichtbrechung der Erdatmosphäre dagegen keine große Rolle, da die Sterne eher punktförmig wirken.
Schlussfolgerungen von Wolfhard Schlosser müssen nicht unbedingt richtig sein
Schlosser geht von einem mathematischen Horizont aus, einer künstlichen Horizontebene, die wie das Meer spielgelglatt ist. Diese Ebene steht im rechten Winkel zur Lotrichtung. Aber von einem Beobachtungsort auf dem unebenen Festland öffnet sich in der Regel ein Horizontkreis mit Erhebungen oder von einem Berg aus gesehen auch mit Senken.
Außerdem berücksichtig Schlosser nicht, dass der fehlende Horizontbogen auffällig länger war, als der noch existierende. Warum geht er auf dieses Detail nicht ein? Schließlich könnte der Längenunterschied insbesondere auf das unterschiedliche Geländerelief am Horizontkreis zurückzuführen sein.
Zudem es könnte sein, dass die Horizontbögen gar keinen Bezug zum Mittelpunkt der Himmelsscheibe haben. Da die Bronzescheibe ja kalt geschmiedet wurde, konnte der Schmied schwerlich eine exakte Kreisform erzielen. – Wurde der Mittelpunkt nicht eher wie in der Realität vom Standort des Beobachters in Bezug zu bestimmten Sternen definiert? In dem Fall könnte ein Kreuzungspunkt durch bestimmte Sterne definiert worden sein.
Stimmen die Himmelsrichtungen, die Wolfhard Schlosser festgelegt hat, für alle dargestellten Bildelemente? Könnte es nicht sein, dass man für unterschiedliche Aspekte andere Definitionen verwendete?
Fazit
Die Enden der Horizontbögen haben einen Bezug zur Sonne.
Die Tierkreissterne vor den Enden der Horizontbögen unterliegen an erste Stelle ihren eigenen Gesetzen. Und erst an zweiter Stelle werden sie mit der Sonnenbahn in Bezug gebracht.
1
Schlosser, Wolfhard. Die Himmelsscheibe von Nebra – Astronomische Untersuchungen. Der geschmiedete Himmel. Herausgeber Harald Meller. Seite 45-46
Unser Sonnensystem ähnelt einer flachen Scheibe, in der die zentrale Sonne von den Planeten und unzähligen kleineren Himmelskörpern umkreist wird. Darin stellen wir uns die gleichbleibende wahre Bahn der Erde um die Sonne als einen imaginären Kreis vor, der Ekliptik genannt wird. Aber von der Erde aus gesehen erscheint die Ekliptik als veränderliche, scheinbare Bahn der Sonne, die in der Mitte des Tierkreises verläuft.
Beobachtet man die Sonne vor dem Hintergrund des Sternenhimmels, so variieren die sonnennahen Sterne nahezu täglich. Denn die Sonne wandert jeden Tag im Tierkreis circa ein Grad weiter nach Osten. Dabei geht sie ein halbes Jahr lang immer südlicher am Horizontkreis auf und unter. Das bedeutet, dass unser Tagesgestirn jetzt zunehmend niedrigere Umlaufbahnen von benachbarten Sternen teilt. Die Tage kürzer werden. Doch von der Wintersonnenwende bis zur Sommersonnenwende gewinnt sie wieder an Höhe. Nun erscheint sie mit anderen Sternen, deren Aufgangsorte sich am Horizont in nördlicher Richtung aneinanderreihen.
Allerdings werden all diese nur punktförmig erscheinenden Gestirne tagsüber vom helleren Sonnenlicht überstrahlt.
Also kann man den veränderlichen Lauf der Sonne nur anhand der hellen Sterne verfolgen, die ihr in der Morgen– oder Abenddämmerung vorausgingen oder folgten. Selbstverständlich handelt es sich in dem Fall um Sterne der Tierkreissternbilder. Schließlich wurde der Zodiakus ja überhaupt erst definiert, um die Bewegungen der wandelnden Gestirne zu beschreiben.
Auf der Himmelsscheibe symbolisieren zwei Randbögen die scheinbare Bahn der Sonne
Laut Wolfhard Schlosser (20081Schlosser, Wolfhard. Die Himmelsscheibe von Nebra – Astronomische Untersuchungen. Der geschmiedete Himmel. Herausgeber Harald Meller. Seite 44) definieren zwei später ergänzte Horizontbögen, die Pendelbereiche der Sonnenauf- und Untergänge am Horizontkreis. Dank dieser Erkenntnis können wir wie W. Schlosser schlussfolgern, dass die oberen und unteren Enden der goldenen Horizontbögen die Sonnenwenden anzeigen. Heutzutage treten diese kalendarischen Ereignisse um den 21. Juni beziehungsweise 21. Dezember ein.
Folglich befinden sich ungefähr in der Mitte der Bögen der Ost- und Westpunkt des Horizontkreises mit den Tag-und-Nacht-Gleichen. Dieser Termin entspricht etwa dem 21. März und dem 23. September.
Die Solstitien und Äquinoktien sind vier ganz besondere Ekliptikpunkte, die im Jahreslauf auch kalendarische Funktionen erfüllen.
Am Morgen der Wintersonnenwende geht die Sonne im Südosten auf, wenn die Ekliptik, die Mittellinie des Tierkreises, von Südost nach Nordwest verläuft. Um die Mittagszeit erreicht sie ihre niedrigste und zentrale Stellung zwischen dem Ost- und Westpunkt. Und abends, wenn unser Tagesgestirn im Südwesten untergeht, erstreckt sie sich Südwest nach Nordosten. Aber da es sich um die imaginäre Mittellinie des Tierkreises handelt, ist sie natürlich nie zu sehen. Und die Sterne werden vom gleißenden Sonnenlicht überstrahlt.
Vom Bewegungsablauf der Ekliptik nehmen wir nur den Auf- und Untergangsort der Sonne sowie ihren Höchststand über dem Südpunkt wahr. Aber in der Dämmerung und des nachts leuchten beiderseits der Ekliptik die Sterne des Zodiakus.
Sternenkarten selber erstellen. – Heutzutage bieten moderne Computersysteme mehrere Möglichkeiten an, um die Ereignisse des dreidimensionalen Himmelgewölbes zweidimensional nachzubilden. Beispielsweise ist STELLARIUM ein kostenloses virtuelles Planetarium, das weltweit für Zeitpunkte in der Vergangenheit, Gegenwart oder Zukunft die Positionen aller Gestirne anzeigt und berechnet. Man kann die Projektionsart wählen und dann zwischen den Horizontansichten und Himmelspolen fließend wechseln. In der Regel verwende ich die stereographische Projektion. Bei diesen zweidimensionalen Darstellungen des Sternenhimmels stimmen die Winkel zwischen den Sternen. Aber dafür werden die Strecken und Flächen zu den Kartenrändern immer größer, weil der bogenförmige Abstand zwischen den Sternen in geraden Linien gezeichnet wird. Das bedeutet die winkeltreue Form der Sternbilder wird gestreckt.
Variationen in der Darstellung von Sternenkarten
Generell zeigen Sternenkarten immer nur einen Ausschnitt der Himmelsansicht. Und dieser ist nur für einen kurzen Augenblick sowie für einen bestimmten Standort gültig. Denn einerseits dreht sich die Erde permanent um ihre eigene Achse, was an den Längengraden zu unterschiedlichen Tageszeiten führt. Andererseits umrundet sie in einem Jahr die Sonne. Dabei sind aufgrund der Neigung der Erdachse an den Breitengraden variierende Tageslängen und Jahreszeiten spürbar. Diese Phänomene lassen sich natürlich auch am Sternenhimmel zu beobachten.
Zudem kann der Horizont als Kreis dargestellt werden, in dem Sterne aus dem gesamten Blickfeld abgebildet werden (Abbildung 1). Aber ebenso kann der Horizont auch als Linie wiedergegeben werden, über der nur die Gestirne einer bestimmten Blickrichtung gezeigt werden (Abbildung 2).
Verschiedene Sternenkarten werden auf der Himmelsscheibe in gesonderten Bereichen der Bronzescheibe abgebildet
Hingegen werden auf der Himmelsscheibe von Nebra Sternenkonstellationen von unterschiedlichen Zeitpunkten sowie aus gegenüberliegenden Blickrichtungen (die roten und blauen Sterne mit dem Horizont als Linie) und aus verschiedenen Himmelsrichtungen (die orangenen Sterne an ihren Auf- und Untergangsorten im Horizontkreis) in nur einer Himmelskarte kombiniert. Dies hört sich kompliziert an. Doch es gibt eindeutige Verknüpfungen und Hinweise zwischen einzelnen Symbolen und Sterngruppen. Dadurch lässt sich der gesamte Bildinhalt relativ einfach und schlüssig erschließen.
Nachweislich haben die Astronomen der Himmelsscheibe von Nebra ebenfalls schon einen Kreis in 360°eingeteilt. Dieses ist auf der Bronzescheibe dadurch belegt, dass der Himmelsnordpol dem 51. Breitengrad entsprechend 51° über dem Horizont zu finden ist. Von ihm aus erstreckt sich bis zum Zenit ein 39°-Winkel und weiter in Richtung Süden folgen drei Mal 30°-Winkel. Mehr dazu: Die Kreisscheibe symbolisiert auch die Erde
Zwei Methoden um die Bewegungen der Gestirne zu ermitteln
Da die Schöpfer der Himmelsscheibe den Horizont für die Ermittlungen der Sternenpositionen verwendete haben, nutze auch ich das sogenannte Azimutale Gradnetz. Hierbei misst man einerseits den Horizontalen Winkel Azimut (a) zwischen 0° bis 360° von dem schon früher gut auszulotendem Nordpunkt aus, bis zu einer Senkrechten, die durch den jeweiligen Stern verläuft. Und andererseits wird die Höhe (h) als Winkelabstand vom Horizont 0° bis zum Zenit auf +90° ermittelt; bis zum Mittelpunkt des Himmelsgewölbes über dem Kopf des Beobachters. Diese Vermessungen können selbst mit einfachen Hilfsmitteln zu guten Ergebnissen führen.
Beim Äquatorialen Koordinatensystem hingegen reicht der größte Höhenwinkel vom Himmelsäquator 0° bis zu +90° im Himmelsnordpol. Und der Winkelabstand auf dem rotierenden Himmelsäquator wird von Frühlingspunkt bis zu dem Großkreisberechnet, der durch den Nordpol und den entsprechenden Stern verläuft. Dieses System blende ich ein, weil hier die Parallelkreise zum Himmelsäquator sehr gut die Bahnen aller Sterne veranschaulichen. Aber es muss unbedingt das jeweilige Datum eingegeben werden.
Als ich 2009 mit meinen ersten Forschungen zu Himmelsscheibe von Nebra begann, musste ich den Frühlingspunkt etc. noch von Hand berechnen. Seitdem wurde die Software stetig weiterentwickelt. Und inzwischen lassen sich viele Hilfsmittel und Phänomene per Knopfdruck einblenden. — Ein ausgezeichnetes Programm und herzlichen Dank allen Entwicklern!
1
Aschenbrenner, Klaus (1962). Blick zu den Sternen – Ein astronomisches Arbeitsbuch. Otto Salle Verlag. Frankfurt am Main – Hamburg. S. 7.
2
Aschenbrenner, Klaus (1962). Blick zu den Sternen – Ein astronomisches Arbeitsbuch. Otto Salle Verlag. Frankfurt am Main – Hamburg. S. 8.
Die Sternenkarte der Himmelsscheibe im Vergleich zu heutigen Darstellungen
In diesem Artikel erfahren Sie durch welche Himmelsrichtung sich bestimmte Sterne und Sternengruppen der Himmelsscheibe zweifelsfrei zuordnen lassen. Es handelt sich um ein Basiswissen zum Verständnis der hier vorgestellten Interpretation. Die Himmelsmechanik der Frühbronzezeit wird anhand von modernen Sternenkarten erklärt.
Als erstes sei darauf hingewiesen, dass es selbstverständlich mehrere Möglichkeiten gibt Sternenkarten aus unterschiedlichen Blickwinkeln zu erstellen.
Hinkommt, dass die dreidimensionalen Geschehnisse des Sternenhimmels nur zweidimensional dargestellt werden.
Wenn wir die Fixsterne über einen längeren Zeitraum in der Natur beobachten, fallen uns in jeder der vier Haupt-Himmelsrichtungen unterschiedliche Bewegungsmuster auf. Heutzutage können wir diese Sternenbahnen ohne große Anstrengungen und mit wenig Zeitaufwand ermitteln.
Hierzu brauchen wir nur eine feststehende Kamera, die ein Foto mit in einer Langzeitbelichtung vom Nachthimmel aufnehmen kann. Dadurch werden die Bewegungen der Sterne als Strichbahnen aufgezeichnet.
Oder wir verwenden ein geeignetes Computerprogramm, das wir ohnehin benötigen, wenn wir die Bedeutung der astronomischen Symbole der Himmelsscheibe von Nebra erforschen wollen. In dem Programm habe ich als Standort die Koordinaten des Fürstenhügels von Leubingen eingegeben und das Jahr 1950 v.Chr. Dies ist die Lebenszeit jenes Fürsten, der wegen der großen Übereinstimmung seiner bedeutenden Grabbeigaben im Vergleich mit den Beigaben der Himmelsscheibe möglicherweise als Schöpfer der Himmelsscheibe in Frage kommt (Meller, 20051Meller, Harald (2005). Der Körper des Königs. Der geschmiedete Himmel. Konrad Theiss Verlag. S. 96.).
Nur in Blickrichtung Norden kreisen Sterne auf vollständigen Parallelkreisen um ein Zentrum. Und der gesamte Umschwung erfolgt entgegen dem Uhrzeigersinn.
In dem dunkelsten Bereich des Himmels, in dem nie die Sonne zu sehen ist, umrunden die Zirkumpolarsterne in Vollkreisen den Himmelsnordpol. Es gilt, je weiter ein Stern vom scheinbaren Zentrum entfernt ist, desto größer wird sein Kreisbogen. Diese Situation wird durch das beigestellte Foto belegt. Auch werden die einzelnen Bogenabschnitte nach außen hin länger und gestreckter. Außerdem erzeugen helle Sterne natürlich hellere und breitere Leuchtspuren. Siehe Abbildung 1.
Ergebnis: Folgende Zirkumpolarsterne hatte nur damals eine besondere Eigenschaft
Trotz der offensichtlichen Gleichförmigkeit der nördlichen Sternenbahnen zeigt die Himmelsscheibe, dass unter Anderem folgenden Zirkumpolarsternen eine besondere Bedeutung zukam:
Als ALDERAMIN / Kepheus und KOCAB / Kleiner Wagen zwischen dem Nordpunkt und dem Himmelsnordpol senkrecht übereinanderstanden, zeigten sie den wahren Norden an! Somit konnten auch alle anderen Richtungen erschlossen werden.
Zudem kennzeichneten sensationellerweise zwei weitere Sternenzeiger gemeinsam vier Viertelumdrehungen des Sternenhimmels. Zuerst querte VEGA, der äußerste der damaligen Zirkumpolarsterne, in Horizontnähe den Nordpunkt (N). Seine Bahn ließ sich gerade noch komplett über der Landschaft verfolgen. Zeitgleich standen nahezu senkrecht über ihm ETAMIN / Drache und η-DRACHE. Siehe Abbildung 2. Und genau sechs Stunden nach dem ersten Zeiger erreichte ein anderer Zeiger aus POLARIS / Kleiner Wagen und ALKAID / Großer Wagen dieselbe Position!
Nur in der Frühbronzezeit fungierten Zirkumpolarsterne als Sternenuhr
In etwa 26.000 Jahren beschreiben beide Himmelspole, wegen einer Taumelbewegung der Erdachse, annähernd eine Kreisbahn am Himmel. Infolge dieser sogenannten Präzessionsbewegung verschiebt sich das gesamte Firmament. Trotzdem wird es in diesem langen Zeitraum kaum erneut vorkommen, dass wieder zwei Sternenzeiger Zeiteinheiten zu exakt sechs Stunden anzeigen.
Indessen lässt sich im Zusammenhang mit den Jahreszeiten leicht feststellen, dass aufgrund der Neigung der Erdachse auch die Nächte unterschiedlich lang sind. Daher gibt es in Mitteldeutschland Tage, an denen es nur wenige Stunden dunkel ist. Und folglich ist jede Nacht immer nur ein Teil der Zirkumpolarsterne sichtbar.
Hinzukommt, dass zwar alle Sterne täglich einen vollen Umschwung vollziehen, aber ein Sternentag ist 4 Minuten kürzer als ein Sonnentag. Denn, wenn wir uns einen Fixstern über dem Süd-oder Nordpunkt merken, vergehen nur rund 23 Stunden und 56 Minuten bis er wieder dort ankommt. Dies entspricht einer Drehung der Erde um die eigene Achse. Dagegen scheint die Sonne für denselben Umlauf 24 Stunden zu benötigen. Das liegt daran, dass die Erde zusätzlich zur eigenen Umdrehung noch jeden Tag die Sonne um rund 1 Grad umrundet. Demzufolge geht jeder Stern vier Minuten früher auf und unter.
Diese zeitliche Verschiebung zum Sonnenjahr bewirkt, dass wenn man einen Sternenzeiger immer zur Mitte der Nacht betrachtet, er sich jeweils zu Beginn der vier Jahreszeiten eine Viertelumdrehung weitergedreht hat, und alle Gestirne mit ihm.
Mit den Zeigersternen einer Sternenuhr, die den Nordpol als Zentrum hat, versteht man am einfachsten die Tages- und Jahresbewegung der Fixsterne.
In dieser Himmelsrichtung fallen vor allem die am Horizont pendelnden Sonnenaufgänge auf. Dieses Phänomen wird auch durch die Horizontbögen der Himmelsscheibe versinnbildlicht.
Selbstverständlich lassen sich außerdem des Nachts fortwährend Sternenaufgänge beobachten. Von einem Standort mittlerer geografischer Breite aus betrachtet, folgen nach den Zirkumpolarsternen, in Richtung OST, die ersten unterläufigen Sterne. Aber sie vollführen noch die zuvor beschriebenen linksdrehenden Kreisbögen. Je südlicher sich die Sterne allerdings emporschwingen, umso mehr strecken sich ihre Bahnen. Siehe Abbildung 3.
Der größtmögliche Umschwung erfolgt genau zwischen dem Ost- und Westpunkt. Und nur am Ostpunkt steigen die Sterne in geraden Linien schräg nach rechts auf.
Direkt anschließend, im Südosten, wird der oberirdische Teil der Sternenbahnen weiterhin kleiner. Diesmal krümmen sie sich rechtsdrehend in Richtung Himmelssüdpol.
Es ist unverkennbar, dass alle Kreisbahnen den Himmelspol als Zentrum haben. Und wir stehen im Mittelpunkt einer gleichbleibenden Drehbewegung. Denn zuerst sehen wir im Norden die wachsenden Kreisbögen von vorne, wie sie sich gegen den Uhrzeigersinn drehen. Dann, als sie über uns ihre größten Durchmesser erreichen, wenden wir uns bei einem Blickwinkel von 90 Grad um. Darum nehmen wir im Süden die wieder kleiner werdenden Bögen von hinten wahr, die sich jetzt im Uhrzeigersinn drehen.
Ergebnis – In Blickrichtung Osten sind also nur die Sternenaufgänge von Interesse
Auf der Himmelsscheibe von Nebra kennzeichnen einerseits die Tierkreissterne SPICA / Jungfrau und HAMAL / Widder den Ostpunkt und somit den Himmelsäquator. Zusätzlich belegen sie das Wissen um den Sonnenaufgangsort an den Äquinoktien.
Des Weiteren markieren NUNKI / Schütze und REGULUS / Löwe ungefähr die Horizontstellen, wo das Tagesgestirn an den Solstitien auftauchte.
Und natürlich bieten sich die beständig gleichbleiben und präzisen Aufgangsorte der Fixsterne am Horizontkreis für allerlei andere Forschungen an.
Die Himmelsrichtung SÜD
Das Merkmal dieses Horizontbereichs sind die halbkreisförmigen Bögen der Fixsterne, deren Drehpunkt im Himmelssüdpol (HSP), unterhalb des Horizontes, liegt.
Um unterläufige Sternenbahnen zu verfolgen, eignet sich am besten ein helles Sternenpaar, das kurz nacheinander zwischen OST und SÜDOST auftaucht. Denn in dieser Region entstehen die kürzeren und niedrigeren Umlaufbahnen. Daher braucht man nicht so lange auszuharren und man muss den Kopf nicht so in den Nacken legen.
Alle Sterne erscheinen erst etwas oberhalb des Horizontes, weil ihr Licht unter Anderem von der Erdatmosphäre verschluckt wurde. Aus demselben Grund leuchten die südlichsten Sterne, auf sehr niedrigen Bahnen, nur schwach oder sie sind gar nicht zu sehen.
Zum Verständnis moderner Sternenkarten
Durch die ausgewählte zweidimensionale stereographische Projektion sind die Strecken und Flächen der Sternbilder verzerrt dargestellt.
Im Vergleich mit Landkarten sind OST und WEST vertauscht, da es sich um eine Ansicht von unten, von der Erde in Richtung Himmelsgewölbe, handelt.
Die rote Linie stellt die Ekliptik, die wahre Bahn der Erde um die Sonne, dar. Zugleich handelt es sich aus geozentrischer Sicht um die scheinbare Bahn der Sonne, die in der Mitte der Tierkreisbilder verläuft.
Der hellblaue konzentrische Bogen symbolisiert den Himmelsäquator, den ins Weltall hinaus projizierten Erdäquator. Folglich ist dieser Großkreis von beiden Himmelspolen ringsum gleichweit entfernt. Und da er das Firmament in zwei gleichgroße Hälften unterteilt, wird auch Himmelsgleicher genannt. Diese Tatsache fällt besonders auf, wenn die Sonne an den Äquinoktien seiner Spur folgt. An diesem Tag sieht man sie von jedem Ort der Erde aus im Ostpunkt auf- und im Westpunkt untergehen. Tag und Nacht sind gleich lang.
Rechtwinklig zum Himmelsäquator verläuft der Meridian, ein weiterer Großkreis, welcher den Nord- und Südpunkt sowie beide Himmelspole und den Zenit verbindet.
Wichtig für das Verständnis der Himmelsscheibe von Nebra
DER HORIZONTKREIS
Für die Aufgangs- und Untergangsorte der Tierkreissterne, der Sonne sowie der Planeten ist der Rand der Himmelsscheibe als HORIZONTKREIS zu deuten. Die Tierkreissterne definieren die Himmelsrichtungen, egal wie in welcher Position sie sich befindet.
Eine moderne runde Himmelskarte hingegen muss immer so gedreht werden, dass die jeweilige Blickrichtung mit der Himmelsrichtung am unteren Rand der Karte übereinstimmt. Zusätzlich müsste sie über den Kopf gehalten werden, da OST und WEST vertauscht sind.
Abbildung 2 zeigt eine solche Sternenkarte, in der der Horizontkreis ebenfalls den sichtbaren Bereich begrenzt. Es handelt sich um eine Momentaufnahme all jener Sterne, die von jenem Breitengrad aus sichtbar waren.
EINE HORIZONTLINIE
Um andere Bildinhalte darzustellen, erstreckt sich auf der Himmelsscheibe eine HORIZONTLINIE zwischen den Tierkreissternen, die den Ost- und Westpunkt symbolisieren. Sie teilt den Sternenhimmel in zwei Teile. Jeweils die Blickrichtung SÜD und NORD. In dem Fall dreht man auch hier die Bronzescheibe entsprechend einer der beiden Blickrichtungen. Oder man umrundet sie und stellt sich auf die andere Seite, da sie nicht über den Kopf gehalten werden muss.
Diese, an den Endpunkten markierte, Horizontlinie bildet in Blickrichtung Süden die Basis für die Anordnung von zwei wichtigen Sternenkonstellationen der Frühbronzezeit.
In den Abbildungen 4 bis 6 werden nachfolgend Teilbereiche des sichtbaren Himmelsgewölbes untersucht. Diese Sternenkarten zeigen die südlichen Sternbilder über der HORIZONTLINIE in einer Art Seitenansicht. In Blickrichtung Süden gehören die Gestirne oberhalb des Himmelsäquators eigentlich schon den nördlichen Sternen.
Ein Sternenhimmel ohne Lichtverschmutzung
In Abbildung 5 sind die Sternpunkte vergrößert worden, da die lichtschwachen Sterne in dem kleinen Kartenformat sonst unsichtbar wären.
Hier soll nur vermittelt werden, wie herrlich eine sternenklare Nacht sein kann, wenn man in einer Gegend ist oder in eine Zeit zurückreist, in der es noch keine Lichtverschmutzung gab. Denn in dem Fall können mit dem bloßen Auge nicht nur die hellen Sterne, sondern weltweit zirka 6780 Sterne wahrgenommen werden.
Um sich zu orientieren ist es am einfachsten nur die hellsten Sterne in der Morgen- oder Abenddämmerung zu beobachten. Und zu diesen ersten nächtlichen Gestirnen gehören die Planeten.
Gruppierungen von hellen Sternen erleichtert das astronomische Verständnis und die Beobachtung von Planeten
Um beispielsweise den Stand der Sonne oder Wandelsternen zu untersuchen war es schon immer hilfreich helle Sterne zu gruppieren. Es liegt nahe, dass dies auch schon in der Frühbronzezeit zeichnerisch erfolgte. Denn dann konnte man sich ihre Beziehungen und Positionen leichter einprägen. Jedoch waren die meisten Zeichnungen wohl auf einem vergänglichen Material erstellt worden, außer der Sternenkarte auf der Bronzescheibe
Zum Vergleich nun die vorherige Sternkarte, in die diesmal Verbindungslinien und Motive zu den Namen der Sternbilder eingeblendet sind. Es wird deutlich, dass sich unser Gehirn abstrakte Dinge besser merken kann, wenn wir uns dazu Geschichten und Bilder merken. Siehe Abbildung 6.
Abschnitte einer Sternenbahn als Zeitmesser
Die nächste Sternenkarte soll zeigen, dass an den Positionen eines ausgesuchten Sterns bestimmte Zeiträume ermitteln werden können.
In frühen Zeiten, als man schon die ersten Uhren besaß, scheint man sich Tagesbögen der Sonne oder Fixsterne ausgesucht zu haben, deren Bahnlänge einer bestimmten Zeiteinheit entsprach.
Im linken Teil der Abbildung 7 ist derselbe Himmelsauschnitt, wie zuvor, mit der gleiche Himmelsauschnitt wie zuvor, die verzerrt dargestellte Sternenkonstellation namens ˈWintersechseckˈ, abgebildet. Danach folgen zwei weitere Sternenkarten im Abstand von jeweils 4 Stunden. Jedesmal sehen wir den Stern SIRIUS in einer anderen Position. Sein Aufgang, sein Höchststand und sein Untergang könnten Zeitabschnitte von 4 Stunden kennzeichnen.
Position der Sechseck-Konstellation – Heute und vor 4000 Jahren
Heutzutage ist unser Wintersechseck in der dunklen Jahreszeit die hellste und auffälligste Konstellation aus sechs Sternbildern. Wobei der Stern BETEIGEUZE aus dem Sternbild Orion ungefähr im Zentrum des Sechsecks leuchtet. Laut dem Computerprogramm ‘Stellarium’ steht jener Stern derzeit zur Wintersonnenwende gegen 0:15 Uhr und in einer Höhe von rund 46 ° über dem Südpunkt. Jedoch um 1950 v.Chr. erreichte BETEIGEUZE seine mitternächtliche Hochstellung bereits ungefähr 48 Tage vor dem Wintersolstitium. Als er schließlich am Sonnenwendtag den Meridian querte, geschah dies schon gegen 20:45 Uhr und nur circa 36 ° über dem Horizont.
Dementsprechend gehört der höchste Stern des Sechsecks heute zu den Zirkumpolarsternen. Denn CAPELLA quert den Meridian in der südlichen und nördlichen Hemisphäre auf eine Höhe (H) von rund 84 ° beziehungsweise 7 °. Aber um 1950 v.Chr. war dieser Stern noch unterläufig, was bedeutet, dass er im Norden auf- und unterging. Er passierte den Meridian nur einmal auf etwa 70 °.
Beim niedrigsten Stern SIRIUS beträgt der Höhenunterschied am Meridian innerhalb von 4000 Jahren schließlich nur circa 2-3 Grad. Heutzutage hat er eine obere Kulmination von rund 22° und um 1950 v.Chr. waren es nur 19°.
All diese Verschiebungen sind größtenteils auf die rund 26.000 jährige Präzessionsbewegung zurückzuführen.
Fazit: Das Besondere an der südlichen Himmelsrichtung
Das Besondere an der Blickrichtung Süden ist, dass der gesamte Umschwung im Uhrzeigersinn erfolgt. Und dabei erreichen die Sterne im Lauf eines Jahres auf ihren parallelen Kreisbögen, in einem festen Gefüge übereinander und nebeneinander, ihren Höchststand über dem Südpunkt. Aus ihren Aufgangsorten lassen sich ihre Kulminationspunkte im Meridian abschätzen. Doch Winkelmessung am Horizontkreis können nicht so einfach die Längen der Sternenbahnen übertragen werden. Denn das Zentrum aller südlichen Gestirne ist der Himmelssüdpol unterm Horizont. Aber es wurde, was ebenfalls auf der Himmelsscheibe dargestellt ist, die Höhe der Gestirne am südlichen Meridian gemessen.
Außerdem lassen sich die Jahreszeiten am besten durch südliche Sternbilder bestimmen. Dies ist auf der Himmelsscheibe durch die Sechseck-Konstellation belegt, auf welche einen Vierteltag später (oder zur selben Uhrzeit ein Vierteljahr danach) eine Dreiecks-Konstellation folgte. Dagegen verlagern die Zirkumpolarsterne im Jahreslauf, bei Beobachtungen zu einer festgelegten Uhrzeit, nur ihre Positionen in Bezug zum Himmelspol.
Gegenwärtig haben wir neben der Wintersechseck-Konstellation, ein Frühlingsdreieck (ARCTURUS, REGULUS, SPICA), ein Sommerdreieck (VEGA, DENEB und ALTAIR) und ein Herbstviereck (die 4 lichtschwachen Hauptsterne des Pegasus).
Ergebnis – Die Sechseck-Konstellation mit dem Zirkumpolarstern VEGA als Zeitzeiger
Der Sternenhimmel der Frühbronzezeit offenbarte ein ganz einmalige Methode einen Tag sowie das Firmament in ¼-Einheiten zu unterteilen!
Wie die Himmelsscheibe verrät, hatten nachweislich einige Sterne Zeitzeigerfunktionen: Denn wenn zwei bis drei Zirkumpolarsterne gleichzeitig übereinanderstanden, dann befanden sie sich im Meridian und zeigten vom Nordpunkt zum Nordpol.
Beispielsweise wurde ein Viertel der Nacht durch den Sternenzeiger mit VEGA knapp über dem Nordpunkt angezeigt. Zusätzlich war PROCYON aus der südlichen Sechseck-Konstellation kurz nach seiner Passage des Meridians zu sehen. Dann, 6 Stunden später, erschien der zweite Sternenzeiger. In dem Moment war gerade eine Dreieck-Konstellation komplett sichtbar geworden und PROCYON stand an seinem Untergangsort.
Nur in der Frühbronzezeit ereignete sich folgendes astronomisches Phänomen: Durch zwei sich abwechselnde Sternenzeiger ließen sich die Viertelumdrehungen einer Sternenuhr und des Firmamentes genau justieren.
Die Himmelsrichtung WEST
Auf dieser Langzeitaufnahme (Abbildung 8) sieht man wie alle Sterne am winterlichen Abendhimmel eine Lichtspur hinterlassen. Diesmal allerdings in einem schräg absteigenden Neigungswinkel zum westlichen Horizont.
Im Grunde sehen wir nur den letzten Abschnitt des Bewegungsmusters, das im Osten begann und dessen Zentrum im Süden liegt.
Der Ort Leubingen, in dem vielleicht einer der Schöpfer der Himmelsscheibe begraben wurde, liegt auf dem 51. Breitengrad. Für jeden Breitengrad gilt, dass er der Höhe des Himmelsnordpols (51°) und des Himmelssüdpols unter dem Horizont (-50°) entspricht. Ebenso weit ist der Winkel zwischen einer senkrechten Linie zum Horizont und der Auf- und Untergangsrichtung eines Gestirns im Ost- und Westpunkt (51°).
Ergebnis: Auch hier stehen speziell die Untergänge einiger Tierkreises im Fokus
Im westlichen Viertel des Horizontkreises sind die gleichen Auffälligkeiten festzustellen, wie in Blickrichtung Osten, nur horizontal gespiegelt.
Für die Himmelsscheibe von Nebra lassen sich für den Westpunkt die Tierkreissterne HAMAL / Widder und ZUBENELGENUBI / Waage belegen. Diese Sterne versinnbildlichen auf der Bronzescheibe den Untergang der Sonne zur Tag-und-Nacht-Gleichen. Und DENEB ALGEDI / Steinbock und CASTOR / Zwilling kennzeichnen die Sonnenuntergangsorte an den Solstitien.
Jede Himmelsrichtung hat eigene astronomische Erscheinungen
Auf der Himmelsscheibe von Nebra kennzeichnen Tierkreissterne (orange) die Auf- und Untergangsorte der Sonne am Horizontkreis. Sie repräsentieren somit verschiedene wichtige Himmelsrichtungen.
In der Nähe der Extremstellungen der Ekliptik oder der Mittellinie des Tierkreises (orangene Linien) verlaufen die Bahnen der fünf mit bloßem Auge sichtbaren Planeten (grün) sowie von Sonne und Mond. Merkur und Venus erscheinen nur am Horizont und immer in Sonnennähe. Dagegen können Mars, Saturn und Jupiter wie der Mond auch hoch am Himmel stehen.
Hinzukommen zwei riesige Sternenkonstellationen zu unterschiedlichen Zeitpunkten. (Die rot markierten Sterne auf einer Seite der Horizontlinie.)
Abschließend offenbaren acht Zirkumpolarsterne, die sich wiederum in vier Gruppen zu unterschiedlichen Zeitpunkten einteilen lassen, das größte Geheimnis der Himmelsmechanik. (Die blau markierten Sterne auf der anderen Seite der Horizontlinie.)
Und es lassen sich auch kombinierte Sterne oder sogar ganze Gruppen eindeutig zuordnen, die zeitgleich aus gegenüberliegenden Blickrichtungen, eine Rolle spielten.
All diese hört sich unglaublich an, ist aber wahr und nachprüfbar!
Welch enorme Meisterleistung all diese im Grunde einzelnen Sternenkarten in nur einer einzigen Karte zu kombinieren! Und das mit dem Ziel, dass ein fremder Sternenkundiger den Bildinhalt trotz diesen vielfältigen Anforderungen noch entschlüsseln kann.
Die Namen der Sterne, die damals die Himmelsrichtungen kennzeichneten
Diese Interpretation der Himmelsscheibe von Nebra mag zuerst unglaublich klingen. Doch wie wir auch in diesem Beitrag gesehen haben, gibt es logische Verknüpfungen und eindeutige Hinweise zwischen einzelnen Symbolen und Sterngruppen. Dadurch ließ sich der gesamte Bildinhalt, im Rückblick, doch relativ einfach und schlüssig erschließen: Im Süden ziehen Sternbilder mit zeitlicher Fixierung. Im Osten und Westen zählen nur die Auf- und Untergangsorte. Im Norden umkreisen Sterne den Nordpol.
Der Stern VEGA kennzeichnet, zwecks der Zugehörigkeit zum Wintersechseck und weil kein horizontnaher Stern über dem Südpunkt existiert, die Himmelsrichtung SÜD.
Jedoch tatsächlich steht der Zirkumpolarstern VEGA eindeutig für die Himmelsrichtung NORD, wie die Himmelsscheibe von Nebra zweifelsfrei bezeugt!
Auch die Himmelsrichtungen OST Und WEST sind horizontnah durch die Sterne SPICA / Jungfrau und HAMAL / Widder sowie erneut durch HAMAL / Widder und ZUBENELGENUBI / Waage definiert worden. Sie haben die Aufgabe die Horizontorte der Sonne an den Äquinoktien darzustellen.
Zudem symbolisieren NUNKI / Schütze und DENEB ALGEDI / Steinbock die Sonnenorte zur Wintersonnenwende sowie REGULUS / Löwe und CASTOR / Zwilling jene zur Sommersonnenwende.
1
Meller, Harald (2005). Der Körper des Königs. Der geschmiedete Himmel. Konrad Theiss Verlag. S. 96.
Um die Tierkreissterne der Himmelsscheibe zu ermitteln, müssen wir den Rhythmus des Zodiakus und seine täglich variierenden Erscheinungsformen verstehen.
Der Tierkreis im Laufe eines Tages
Wenn wir jede Nacht den Verlauf des Zodiakus verfolgen, sehen wir wie sich nach einigen Tagen das westlichste von sechs Tierkreissternbildern ganz langsam verabschiedet. Dafür taucht ein anderes im Osten auf. Erst nach einem Jahr werden alle zwölf Sternbilder des Zodiakus den Kreislauf vollendet haben und wieder zu ihrer Ausgangsposition zurückgekehrt sein.
Dies hört sich ganz einfach an. Doch die Tierkreisbilder bewegen sich auf unterschiedlich großen Umlaufbahnen. Dadurch entsteht ein ganz spezifisches Bewegungsmuster. Und zwar verschiebt sich jeweils ein Viertel der sichtbaren Länge des Tierkreisgürtels über dem Horizont.
Im Laufe eines Tages gibt es vier Extremstellungen: Eine Hochstellung mit dem Südpunkt als Zentrum, eine westliche Schrägstellung, eine zentrale Tiefstellung und eine östliche Schrägstellung. Diese Extremstellungen ereignen sich jeden Tag rund 4 Minuten später.
Der Verlauf des Zodiakus jeweils zu Beginn eines Vierteljahres
Nun könnten wir theoretisch sehen, dass im Auf- und Untergangsort der Sonne eine dieser Extremstellungen begann. Allerdings ließ sich dies früher nur durch Astronomen im Rückblick ermitteln, da das helle Sonnenlicht in dem Moment noch die horizontnahen Tierkreissterne überstrahlte.
Die Tierkreissterne der Himmelsscheibe in Bezug zu modernen Sternenkarten
Aus den zuvor beschriebenen Gründen ist es nicht so einfach den goldenen Sternensymbolen vor den Enden und in der Mitte der Horizontbögen entsprechende Sterne des Tierkreises zuzuordnen.
Hinzukommt, dass die Himmelsrichtungen in der frühbronzezeitlichen Darstellung des Sternenhimmels von unseren Sternenkarten abweichen. Dadurch können bei einem Vergleich leicht Flüchtigkeitsfehler unterlaufen. Denn, bekanntermaßen stellen moderne Karten immer die Himmelsrichtungen Osten und Westen gespiegelt dar. Und außerdem müssen sie zur südlichen oder nördlichen Blickrichtung ausgerichtet werden.
So wird der komplexe Umschwung des Tierkreises verständlich
Um den Symbolen vor den Horizontbögen der Himmelsscheibe bestimmte helle Tierkreissterne zuzuordnen, gilt es die Bahnen, die Reihenfolge sowie die zeitlichen Erscheinungen der Tierkreissternbilder kennenzulernen.
Daher beschäftigen wir uns zum leichteren Verständnis zuerst mit den täglichen Kreisbögen der Fixsterne. Danach untersuchen wir bestimmte Eigenschaften der Sonne. Denn ihre täglich leicht veränderte Position vor dem Hintergrund des Sternenhimmels bildet die Mittellinie des Tierkreises. Und im Anschluss befassen wir uns dann mit den Tierkreissternbildern und dem komplizierteren Rhythmus des Zodiakus
Folgende Himmelserscheinungen werden erläutert um die Tierkreissterne der Himmelsscheibe zu deuten:
Die scheinbaren Wanderungen der Gestirne um die Erde
Bei den nachfolgend beschriebenen Bewegungsabläufen der Gestirne ist zu berücksichtigen, dass es die Sichtweise eines Beobachters auf der Erde ist, also eine geozentrische Ansicht. Jedoch bekanntermaßen dreht sich nur der Mond um die Erde und alle Planeten umkreisen die Sonne.
Unterläufige Sterne vollziehen Parallelkreise
Grundsätzlich ist ein Stern jede Nacht, gemäß seiner individuellen Sichtbarkeitsdauer, auf derselben Umlaufbahn zu sehen. Einerseits durchlaufen die Zirkumpolarsterne komplette Vollkreise um die Himmelspole, während alle anderen Sterne immer an denselben Stellen am östlichen Horizont auf und genau gegenüber im Westen untergehen. Dabei erreichen sie im Meridiankreis, welcher durch die Himmelspole sowie durch die Nord- und Südpunkte verläuft, ihren Höchststand. Somit sind die unterläufigen Sterne alle auf unterschiedlich großen und parallel verlaufenden Halbkreisen unterwegs.
Nebenbei, wenn man in Blickrichtung Süden schaut, umkreisen alle Sterne südlich des Himmelsäquators scheinbar den Südpol.
Wenn wir die Sonne beobachten, kommt es uns vor als würde sie täglich, wie die unterläufigen Fixsterne, parallele Halbkreise beschreiben. Nur scheinen ihre konzentrischen Bewegungsbögen, jeweils ein halbes Jahr lang, jeden Tag etwas größer und dann wieder kleiner zu werden. Dabei liegt das eigentliche Zentrum der täglichen Umschwünge im Südpol. Aber da ein Beobachter auf der Nordhalbkugel der Erde diesen nicht sehen kann, zeigt für uns der Südpunkt am Horizont die Mitte ihrer scheinbaren Umlaufbahnen an.
Zur Sommersonnenwende, am 21. Juni, erscheint die Sonne an ihrem nordöstlichsten Aufgangsort über dem Horizont, sie erreicht wie immer mittags ihren Höchststand und geht genau gegenüber im Nordwesten unter. An diesem längsten Tag des Jahres läuft sie auf ihrer höchsten Umlaufbahn. Zu den Tag-und-Nacht-Gleichen, am 21. März und 23. September, taucht unser Tagesgestirn genau am Ostpunkt auf und versinkt am Westpunkt. Deshalb sind Tag und Nacht genau gleich lang und der mittlerer Tagesbogen entspricht dem Himmelsäquator. Schließlich befindet sich die Sonne am 21. Dezember an ihren südlichsten Auf- und Untergangsorten und somit auf ihrer niedrigsten Bahn. Bei dieser Extremstellung, am Tag Wintersonnenwende, handelt es sich um den kürzesten Tag des Jahres.
Die nördlichsten und südlichsten Parallelbögen der Sonne verlaufen gemäß dem Neigungswinkel der Erdachse 23,5° oberhalb beziehungsweise 23,5° unterhalb des Himmelsäquators.
Der Tagesbogen der Sonne stimmt mit einigen Sternenbahnen überein
Die Breitengrade der Erde entsprechen in einem äquatorialen Koordinatensystem den Parallelkreisen zum Himmelsäquator. Da den Abbildungen, in diesem sowie im vorherigen Text über die Fixsterne, der Himmelsäquator als Basiskreis zugrunde liegt, können wir beide problemlos miteinander vergleichen. Und dass, obwohl in der Zeichnung “Scheinbare Bewegung der Sonne“ die Tagesbögen von nur einem Gestirn in einem vierteljährlichen Rhythmus nachempfunden wurden. Hingegen handelt es sich bei der “Scheinbaren Bewegung der Sterne“ um mehrere Sterne, die alle gleichzeitig auf ihren spezifischen Umlaufbahnen zu sehen sind.
Generell gilt, wenn die Sonne an irgendeinem Tag exakt denselben Aufgangsort wie ein Stern hat, dann erreichen beide auch denselben Höchststand und Untergangsort. Einen Eindruck davon bekommen wir, indem wir uns in beiden Abbildungen einmal die niedrigste Umlaufbahn der Sonne am 21. Dezember und dazu den ähnlich verlaufenden Drehkreis der Sterns Sirius anschauen. Es fällt auf, dass vom Bogenlauf beider Gestirne ungefähr ⅓ ihres kompletten Umlaufes sichtbar ist, wobei die Sonne am 21. Dezember tatsächlich etwas weiter nördlich aufgeht.
Aus beiden Zeichnungen kann man vermuten, dass das sichtbare Drittel des Umlaufes von Sirius, wie bei der Sonne, auch einem Drittel Tageslänge entspricht. Dies ist jedoch nicht an allen Tagen der Fall, wie folgender Beitrag belegt.
1
Diercke Schulatlas für höhere Lehranstalten, 77. Auflage um 1936. Verlag von Georg Westermann.
Stünde die Rotationsachse der Erde senkrecht, wären Tag und Nacht gleich lang
Wäre die Achse der sich drehenden Erde nicht gegenüber einer Senkrechten zur Erdbahn geneigt, würde die Bahn der Sonne scheinbar jeden Tag auf dem Himmelsäquator verlaufen. In dem Fall gäbe es vermutlich zwölf Tierkreisbilder entlang des Himmelsgleichers, da die Sonne, der Mond und die Planten dort vor dem Hintergrund des Sternenhimmels umherwandern würden. Doch vor allem wären Tag und Nacht dann überall gleichlang, weil die Sonne immer an demselben Ort auf- und unterginge. Und deshalb gäbe es auch nur eine Jahreszeit; entsprechend den jeweiligen Breitengraden. Ferner würde der tägliche Umschwung des Sternenzelts parallel zum Himmelsäquator stattfinden, wodurch die Gestirne die Erde ausschließlich in scheinbar horizontalen Parallelkreisen umrunden würden.
Die unterschiedliche Sichtbarkeitsdauer der Sterne
Da sich die Erde jedoch um eine geneigte Achse dreht und sie zugleich die Sonne umkreist, haben die Sterne spezifisch lange Sichtbarkeitsbereiche. Diese hängen einerseits von ihrer Helligkeit und der Länge ihrer scheinbaren Umlaufbahnen ab. Andererseits variiert dieser Zeitraum individuell, selbst bei gleichem Streckenverhältnis, durch die Stellung der Sonne unter dem Horizont. Denn, je lichtschwacher ein Stern ist und je näher er im Dämmerungslicht am Horizont steht, umso länger wird er überstrahlt. Durch diesen Stellungsbezug zur Sonne ereignen sich im Jahreslauf eines Fixsterns oder Planeten vier besondere Auf– und Untergänge.
Nach ungefähr einem halben Jahr spiegeln sich die Zeiträume von Tag und Nacht
Das Ergebnis der zwei Drehbewegungen der Erde und der Schrägstellung der Rotationsachse wird in der Abbildung “Tageslängen und Beleuchtung der Erde am 21. Juni“ sehr gut deutlich.
Dort sehen wir, dass die Schattengrenze den Himmelsäquator und seine Parallelbögen wegen der Schrägstellung der Achse nicht mittig trennt. Daher geht die Sonne zur Sommersonnenwende am Nordpol nicht unter, in Richtung Süden werden die Tage immer kürzer und den Südpol erreichen keine Sonnenstrahlen. Außerdem beträgt beispielsweise die Länge des Tagbogens der Sonne am Äquator 180 Winkelgrad und sie ist 12 Stunden lang sichtbar.
Ungefähr ein halbes Jahr später, am 21. Dezember, sind die Schatten- und Sonnenbereiche sowie die die Tageslängen genau vertauscht.
Was die Sterne betrifft, so stimmen die in der Zeichnung im Erdschatten dargestellten Streckenabschnitte der Breitenkreise, wenn wir diese Einteilung für das Weltall übernehmen, mit der räumlichen Länge einer entsprechenden Sternensichtbarkeit überein. Denn, jeder Vollkreis beschreibt einen Winkel von 360 Grad. Ebenso können wir von den genannten Tageslängen im Gegenzug auf die Nächte und ungefähr auf die größtmögliche Sichtbarkeitsdauer einiger Sterne schließen. Allerdings müssen für jeden Stern noch die zuvor erwähnten, individuellen Verzögerungen und vier Minuten Sternenzeit berücksichtigt werden.
Fazit
Die Tageslängen entstehen, weil die Erde bei der Sonnenumrundung schief steht. Dabei ist ihre Achse einmal im Norden zur Sonne geneigt. Dann sind auf der Nordhalbkugel die Tage lang und die Nächte kurz. Es ist Sommer. Ein halbes Jahr später, wenn die Rotationsachse von der Sonne weggeneigt ist, verhält es sich genau andersherum. Es ist Winter. Dazwischen, an den Frühlings- und Herbst-Tag-und-Nacht-Gleichen, steht die Erdachse genau quer zur Sonne und überall herrscht eine ausgewogene Beleuchtungssituation.
1
Diercke Schulatlas für höhere Lehranstalten, 77. Auflage um 1936. Verlag von Georg Westermann.
Alle Tierkreissternbilder ziehen auf Parallelbahnen um den Südpol; natürlich nur aus geozentrischer Sicht. Denn es handelt sich um Konstellationen aus Fixsternen, die nachdem sie im Osten aufgegangen sind, südwärts ziehen. Ebenso queren sie in ihrer höchsten Stellung den Südpunkt. Und abschließend versinken sie nach einem gespiegelten und somit nordwärts gerichteten Bogenlauf am Westhorizont.
Die folgende Abbildung veranschaulicht die derzeitigen Höhen der Umlaufbahnen der Tierkreissternbilder. Ergänzend ist zu berücksichtigen, dass in Blickrichtung Süden die Sonne, der Mond und die Planeten natürlich am täglichen Umschwung im Uhrzeigersinn teilnehmen. Aber zusätzlich umrunden sie scheinbar die Erde in ihrem eigenen Rhythmus gegen den Uhrzeigersinn. Deshalb wird der Zodiakus, der ihnen im Jahreslauf als Kulisse dient, ebenfalls nach links fortschreitend betrachtet.
Hinzu kommt aber, dass sich im Laufe von rund 26.000 Jahren auf Grund der Präzession ihre Auf- und Untergangsorte und somit auch ihre Umlaufhöhen verschieben. Daher ging das Tierkreissternbild Steinbock in der Frühbronzezeit am nächsten vom Südpunkt auf- und unter und sein heller Stern Deneb Algedi war nur rund 7 Stunden sichtbar.
Auf der Himmelsscheibe von Nebra sind demnach beispielsweise die Zirkumpolarsterne in abweichenden Positionen und Umlaufhöhen dargestellt worden und an den vier Jahreseckdaten erscheinen andere Tierkreissterne als heute über dem Horizont.
Schultz, Joachim (1963). Abbildung aus: Rhythmen der Sterne. Philosophisch-Anthroposophischer Verlag am Goetheanum Dornach/Schweiz. Jahreslauf ergänzt.
Der Himmelsäquator ist die in die Himmelskugel projizierte Verlängerung des Erdäquators. Hierbei handelt es sich um einen imaginären Großkreis, der die Ost- und Westpunkte am Horizont verbindet und vom Nord- und Südpol je 90° entfernt ist. Er unterteilt das Himmelsgewölbe in eine nördliche und südliche Hemisphäre. Zudem bildet er das ganze Jahr über die ruhende Konstante, denn der Tierkreis pendelt um den Himmelsäquator. Sein Verlauf wird deutlich, wenn man an den Tag-und-Nacht-Gleichen die auf das Jahr bezogene mittlere Tagesbahn der Sonne verfolgt, da diese dann genau im Ost- und Westpunkt auf- und untergeht. (Siehe Beitrag: Der Tagesbogen der Sonne erreicht täglich eine andere Größe.)
Die Mittellinie des Tierkreises hingegen ist die Ekliptik, die wahre Bahn der Erde um die Sonne. Aber für Menschen ohne astronomische Vorkenntnisse und von der Erde aus betrachtet, ist es eher die scheinbare Jahresbahn der Sonne um die Erde. Täglich dreht sich die Erde um ihre Achse, weshalb die Fixsterne immer an denselben Horizontorten im Osten auf- und im Westen untergehen. Aber weil unser geneigter Planet zusätzlich in einem Jahr die Sonne umrundet, nehmen wir die Tagesbahnen der Sonne täglich leicht variierenden, jeweils ein halbes Jahr lang oberhalb und unterhalb des Himmelsäquators, wahr.
Doch warum spielt die Jahresbahn der Sonne für den Tierkreis eine so große Rolle? Das liegt daran, dass sich die Tagesbögen der Sonne innerhalb von einem Jahr exakt wiederholen. Dagegen zeigen der Mond und die Planeten räumlich als auch zeitlich sehr viel komplexere, undurchschaubarere Bewegungsmuster auf. Denn, ihre Bahnen haben unterschiedliche Neigungswinkel, Durchmesser und sie umrunden die Sonne innerhalb oder außerhalb der Erdbahn.
Alle variierenden Umläufe vorziehen sich vor dem Hintergrund des Tierkreisgürtels. Und um diese Bewegungen der “wandelnden” Gestirne von Westen nach Osten zu verfolgen, wurden die Konstellationen der Tierkreisbilder überhaupt erst definiert. Diese erstrecken sich durchgehend ungefähr über 23,5° beidseitig entlang der scheinbaren Sonnenbahn.
Da die Sonne ein halbes Jahr lang mit Sternen auf- und untergeht, welche hohe Umlaufbahnen oberhalb des Äquators erreichen, verhält sich der Tierkreis ebenso. In der anderen Jahreshälfte ist das Gegenteil der Fall, wenn unser Tagesgestirn nur die Kreisbahnen niedriger Sterne unterhalb des Äquators teilt.
Die halbjährlichen Höhenschwankungen – Der Tierkreis pendelt um den Himmelsäquator
Wie die erste Abbildung zeigt, ist die Höhenschwankung des Zodiakus darauf zurückzuführen, dass sich die beiden Großkreise Ekliptik und Himmelsäquator in einem Winkel von etwa 23,5° schneiden. Jedoch je nach nördlicher geographischer Breite (φ) verändert sich zusätzlich noch die Höhe des Himmelsäquators über dem Südpunkt des Horizontes.
Zur Berechnung verwenden wir Maßangaben des Azimutale Gradnetzes. In diesem Koordinatensystem wird die waagrechte Basis durch den Horizont mit 0° gebildet, der Punkt über unserem Kopf ist das Zentrum. Die Höhe des Nordpols entspricht der geographischer Breite (φ) des Standortes.
Demgemäß gilt für den Fundort der Himmelsscheibe von Nebra: 90° – 51° (φ) = 39°. Der Himmelsäquator befindet sich auf 39°. Daher pendelte die Ekliptik über dem Horizont in Mitteldeutschland zwischen 39° + 23,5° = 62,5° und 39° – 23.5° = 15,5°. -Allerdings betrug der Neigungswinkel der Erdachse und somit auch die Schiefe der Ekliptik in der Frühbronzezeit eher 24°.-
Eine Sternenkarte mit dem Himmelsäquator als Bezugslinie für den Tierkreis
Die folgende Sternenkarte, die den kompletten Sternenhimmel für 1950 v.Chr. in einer zylindrischen Projektion wiedergibt, ist so gestreckt, dass der Himmelsäquator als gerade Bezugslinie dargestellt wird. Wir sehen hier die Lage und die Reihenfolge der Tierkreissternbilder im Laufe eines Jahres. Am Tag der Frühlings-Tag-und-Nacht-Gleiche müssen wir uns die Sonne im Frühlingspunkt (Widder-Symbol), am rechten Anfang der roten Linie, vorstellen. Diese symbolisiert die Ekliptik, die scheinbare Bahn der Sonne, deren Länge 360° beträgt.
Täglich zur selben Uhrzeit gemessen, zieht die Sonne vor dem Hintergrund des Tierkreises um rund 1° weiter nach links, entgegnen ihrem täglich westwärts gerichteten Umschwung. Das liegt daran, dass die Erde für eine Sonnenumrundung von 360° insgesamt 365,24 Tage benötigt.
In der Frühbronzezeit stand die Sonne, nachdem sie auf ihrer mittleren Umlaufbahn das Sternbild Widder durchlaufen hatte, im Frühlingspunkt ; etwa unterhalb der Plejaden in Tierkreissternbild STIER. Drei Monate später passierte sie auf ihrer höchsten Umlaufbahn den Sommersonnenwendepunkt ; kurz nach dem KREBS. Zur Herbst-Tag-und-Nacht-Gleiche traf sie am Herbstpunkt auf den Himmelsäquator; östlich der WAAGE. An diesem Tag war jener, wie zuvor schon im Frühlingpunkt, mit ihrem mittlerem Tagesbogen identisch. Schließlich erreichte die Sonne beim Wintersonnenwendepunkt ihren niedrigsten Höchststand; im Tierkreisbild STEINBOCK.
Da sich auf Grund der Präzession vor allem auch die Lage des Frühlingspunktes verschiebt, wurden dessen Positionen für einige Jahre exemplarisch am oberen Rand der Sternenkarte verzeichnet.
Um 1950 v.Chr. lag der Frühlingspunkt , einer der Schnittpunkte von Himmelsäquator und Ekliptik, in der Nähe der Plejaden.
1. Alle zwölf Sternbilder des Zodiakus sind unterschiedlich breit und lang. Beispielsweise ist die WAAGE besonders kurz und die JUNGFRAU besonders lang. Aber weil das babylonische NORMALJAHR 360 Tage dauerte und wurde jedem Monat ein 30°-Abschnitt auf der Ekliptik zugewiesen. Dadurch wurden die Sternbilder zu Sternzeichen, die im Zusammenhang mit den verschiedenen Planetenpositionen für Prophezeiungen genutzt wurden.
2. In der Frühbronzezeit waren die Tierkreisbilder oberhalb des Himmelsäquators zwischen 18 Stunden (LÖWE) und 12 Stunden (WAAGE) sichtbar. Andere unterhalb des Himmelsgleichers dagegen nur zwischen 12 und 6 Stunden (STEINBOCK). Diese Zeitangaben sind Mittelwerte der Sternbilder, denn beispielsweise ging der hellste Stern des STEINBOCKS Deneb Algedi, am nördlichsten auf und er benötigte für einen nächtlichen Umschwung etwa 7 Stunden. Dafür erschien der namenlose und lichtschwache Stern ω-STEINBOCK erst weiter südlich über dem Horizont, weshalb er für seinen Streckenabschnitt nur rund 5 Stunden brauchte. (Siehe Abbildung “Die täglichen Bewegungsbögen der Tierkreissternbilder“, die aber für 2000 n.Chr. gilt.) — Aus diesem Grund ist es für viele Berechnungen eindeutig besser die Aufgangs- und Untergangsorte einzelner besonders heller Sterne des Zodiakus zu ermitteln, als den Mittelwert eines Tierkreissternbildes zu verwenden.
3. Die Sterne eines Tierkreisbildes können sich oberhalb, auf und unterhalb der Ekliptik (der scheinbaren Sonnenbahn) befinden. Deshalb sind die Auf- und Untergangsorte der hellsten Tierkreissterne an den vier Tagen der Äquinoktien und Solstitien nicht unbedingt mit denen der Sonne identisch.
4. Einige dieser Sternbilder bestehen, wie die FISCHE und der KREBS, nur aus lichtschwachen Sternen. Diese sind in den Dämmerungszeiten nicht in Horizontnähe sichtbar, sondern ein Stück weit höher am Himmel, weil sie dort von der Erdatmosphäre ˈverschlucktˈ werden. Und daher lokalisieren wir ihre erste oder letzte Sichtbarkeit ein bisschen weiter südlich von ihren eigentlichen Auf- und Untergangspunkten. Somit hängt es auch von der Helligkeit eines Sterns ab, wann und wo er über dem Horizont leuchtet.
Die Erforschung der Himmelsmechanik ist anhand der hellsten Sterne am einfachsten
Die Erforschung der Himmelsmechanik ist anhand der hellsten Sterne am einfachsten, weil diese zusammen mit den Planeten schon in den Dämmerungszeiten sichtbar sind.
Anfangs wurden die Sterne je nach Helligkeit mit Buchstaben des griechischen Alphabets versehen. Später wurden dann die hellsten Gestirne der Größenklasse 1 und die schwächsten der Größenklasse 6 zugeordnet. Doch zuletzt zeigten genauere Messungen, dass einige Sterne sowie die Planeten noch heller waren. Deswegen erweiterte man die Größenskala um die Klassen 0, -1, -2 etc. Überdies differenziert man heutzutage zwischen einer visuellen und einer absoluten Helligkeit; die Maßeinheit ist mag / m (magnitudo, lat. = die Größe). In der folgenden Tabelle ist die scheinbare und nicht die absolute Helligkeit angegeben. Das bedeutet, dass zwei Sterne gleich hell erscheinen können, obwohl einer viel heller, aber dafür weiter entfernt ist. Wie die Himmelsscheibe von Nebra zeigt, wurden damals offensichtlich möglichst helle Sterne beobachtet.
1
S.fonsi (21. April 2010). Creativ-Commons. https://anthrowiki.at/Ekliptik
Durchschnittlich befinden sich immer 6 Tierkreissternbilder über dem Horizont. Wenn eines im Osten aufgeht, verschwindet ein anderes im Westen. Versinkt heutzutage das niedrigste Sternbild SCHÜTZE, schwingt sich etwa zeitgleich die Konstellation ZWILLING zu seiner höchsten Umlaufbahn empor. Des Weiteren wird der STEINBOCK durch den im Zodiakus gegenüberliegenden KREBS ersetzt, der WASSERMANN durch den LÖWEN, etc. (siehe Abbildung). Wegen der unterschiedlichen Aufgangsorte und Höchststände der jeweils 6 Tierkreisbilder verschiebt sich die Position und Größe des Tierkreisgürtels permanent. Und zwar nicht nur in der Höhe, sondern auch seitlich. Nun wird verständlich, wie der Zodiakus pulsiert.
Die schwingende Rotation des Tierkreises wird vor allem durch seine hellen Sterne in Horizontnähe offensichtlich
In unregelmäßigen Abständen tauchen das ganze Jahr über helle Sterne des Tierkreisgürtels über dem Horizont auf. Dabei erscheinen sie im Sommerhalbjahr immer nördlicher und im Winterhalbjahr immer südlicher. Durch diese Sterne wird besonders deutlich, dass sich mit der Seiten- und Höhenverlagerung des Tierkreises auch der Mittelpunkt des täglichen Umschwungs verschiebt. Aber diese Bewegung fällt erst nach einigen Tagen auf.
Vierteljährlich sind vor allem Verschiebungen am Horizont zu bemerken
Wenn man den Tierkreis in der Frühbronzezeit alle 3 Monate stets um Mitternacht beobachtete, dann sah man am Tag der Wintersonnenwende seine Steilstellung. In dem Moment stand ein Tierkreisbild im Osten und ein weiteres gegenüber im Westen. Von da an verformte sich der Zodiakus täglich, so dass er zur Frühlings-Tag-und-Nacht-Gleichen die westliche Schrägstellung von Südost nach Nordwest erreichte. Danach zog er sich bis zur Sommersonnenwende zu einer zentralen Flachstellung über dem Südpunkt zusammen. Im Anschluss daran weitete sich sein Durchmesser erneut bis zum Herbst-Äquinoktium, wo sich die östliche Schrägstellung von Nordost nach Südwest ausformte. Und zuletzt kehrte er langsam wieder in seine zentrale Ausgangsposition zurück.
Diese stetig fließende Bewegung des Tierkreises wird in der folgenden Sternenkarte anhand jener vier Jahreseckdaten der Frühbronzezeit veranschaulicht. Zusätzlich zur Steilstellung wurden die drei anderen Extremstellungen der Ekliptik ergänzt. Damals lag der Wintersonnenwendepunkt zwischen KREBS und LÖWE. Heutzutage befindet er sich zwischen STIER und ZWILLING.
Die täglich gleichen Verschiebungen sind dagegen nur teilweise sichtbar
Hinzukommt, dass sich das komplette Bewegungsmuster des Tierkreises gleichfalls innerhalb von einem Viertel Tag, also im Abstand von 6 Stunden, vollzieht. Jedoch werden tagsüber die Sterne vom Sonnenlicht überstrahlt. Sah oder sieht man zur Mitte der Nacht die Steilstellung, kann man am Morgen die westliche Schrägstellung wahrnehmen sowie theoretisch am nächsten Mittag die Flachstellung und gegen 18 Uhr die östliche Schrägstellung. Das liegt daran, dass die Ekliptik diese rhythmisch pulsierende Bewegung innerhalb von rund 23 Stunden und 56 Minuten durchläuft.
Diese zeitliche Differenz von 3 Minuten und 56 Sekunden zwischen der Sternenzeit und einem Sonnentag ist für die tägliche Verschiebung des Tierkreises verantwortlich. Folglich addieren sich die Minuten innerhalb von einem Monat auf knapp 2 Stunden, in einem Vierteljahr auf 6 und im Laufe eines ganzen Jahres auf 24 Stunden. Das bedeutet, dass die Sterne in einem Zeitraum von 365 Sonnentagen 366mal auf- und untergehen.
Alle Bewegungsmuster des Tierkreises zusammengefasst
Einerseits dreht sich die Erde an einem Tag um ihre eigene Achse. Deshalb beschreiben die Tierkreissternbilder konzentrische und parallel verlaufende Kreisbögen um den Südpunkt. Ihre Aufgangsorte liegen im Osten, über dem Südpunkt des Horizontes erreichen sie im Meridian ihren Höchststand und im Westen verschwinden sie wieder am Horizont. Somit vollführt der Tierkreis, wie für alle unterläufigen Fixsterne zutreffend, einen täglich westwärts gerichteten Umschwung.
Andererseits umrundet unser Planet zusätzlich in einem Jahr die Sonne. Daher scheint unser Tagesgestirn täglich, in Bezug zur Ekliptik, eine Strecke von circa einem Längengrad in entgegengesetzter Richtung zurückzulegen; 360° in 365 Tagen. Aus diesem Grund wurden die Bewegungsabläufe der wandelnden Gestirne und demzufolge auch vom Tierkreis ostwärts betrachtet. Dieser Sachverhalt wurde durch eine zylindrische Projektion des gesamten frühbronzezeitlichen Sternenhimmels dargestellt. Denn in dieser Sternenkarte pendelt die scheinbare Bahn der Sonne, welche der Mittellinie des Tierkreises entspricht, um den Himmelsäquator. Da die Erdachse um 23,5° geneigt ist, erhebt sich der Tierkreisgürtel jeweils über eine Strecke von 180 Längengraden über und unter dem Äquator. Diese halbjährliche Höhenschwankung des Zodiakus beträgt auf Grund der Neigung der Erdachse überall 2 x 23,5° = 47°. Von einem Standdort auf dem 51. Breitengrad schwingt er zwischen einer Flachstellung 15,5°und einer Steilstellung 62,5°über dem Südpunkt.
Außerdem erlangt der Tierkreis neben einer Flach- und Steilstellung auch eine östliche und westliche Schrägstellung. Zwischen diesen vier Extremstellungen vergehen täglich 6 Stunden oder jährlich zur selben Uhrzeit betrachtet je 3 Monate.
Alle Symbole der Himmelsscheibe belegen durch ihre exakt definierten Positionen auf der Bronzescheibe das Wissen um die Mechanik des Sternenhimmels.
Die Sterne an den Enden der Extremstellungen des Tierkreises und die fünf wahrnehmbaren Planeten
Blick ins südliche Himmelsgewölbe der Frühbronzezeit
Blick ins nördliche Himmelsgewölbe der Frühbronzezeit – Hier wird die Mechanik des Sternenhimmels am deutlichsten
Zwei Sternenzeiger bilden jeweils gleichzeitig mit der Dreieck- oder Sechseck-Konstellation eine Sternenuhr 4x 6 Stunden oder 4x eine Viertel Himmelsumdrehung
Drei unterschiedliche Hinweise auf die Lage des Himmelsnordpols auf der Bronzescheibe
Über uns, direkt über dem Kopf des Beobachters, befindet sich der Zenit.
Die Höhe des Nordpols über dem Horizont entspricht dem jeweiligen Breitengrad der Erde. (Der Fürst von Leubingen, der vermutliche Schöpfer der Himmelsscheibe, lebte auf dem 51. Breitengrad.)
Der Himmelsäquator steht zum Nordpol im 90°-Winkel.
Beiderseits des Äquators erstreckt sich bis mindestens 23,5° das breite Band des Tierkreises (gelber Bereich). Einzelne helle Sterne der Tierkreisbilder reichen aber noch darüber hinaus.
In einer Abbildung der Himmelsscheibe von Nebra kennzeichnen wir die, uns inzwischen bekannte Stelle des Nordpols und ziehen von dort eine Verbindungslinie zum Mittelpunkt der goldenen Kreisscheibe. Dann tragen wir 51° vom Nordpol nach rechts ab und zeichnen die Horizontlinie, die Erdoberfläche. Auf der anderen Seite des Himmelspols befindet sich auf 39° der Zenit, der exakt mit einem Ende einer linearen Begrenzung des Horizontbogens zusammenfällt! Daran schließen sich drei 30°-Winkel an, deren Verbindungslinien einen Bezug zur Sichel aufweisen. Dies könnte auch der Grund sein, warum die Sichel so sehr viel größer gefertigt wurde als die Kreisscheibe. Denn vom Mittelpunkt der Kreisscheibe zu den Sichelspitzen sollten eindeutig drei 30°-Winkel zu erschließen sein.
Knicken wir nun die Abbildung der Himmelsscheibe an der Horizontlinie und falten den dunklen unsichtbaren Nachtbogen der Sonne nach hinten weg, erhalten wir ein halbiertes Himmelsgewölbe. Wir blicken sozusagen nach Westen. Nun falten wir die Abbildung noch einmal an der Zenitlinie (die nicht die Mittellinie des Halbkreises ist!) und erhalten einen perfekten 90°-Winkel.
– Man war anscheinend dahintergekommen, dass, wenn man die Linien vom Beobachtungsort zu den 90° Markierungen auf einem Kreisrand einzeichnete, und diese Kreisschnittpunkte verband, 4 gleich große Dreiecke erhielt. Alle Linien dieser Dreiecke waren gleich lang und alle Winkel betrugen 90°, die wiederum in 3x 30° unterteilt wurden.
– Der Viertelkreis mit den 30°- Segmenten erinnert an einen Quadranten, der zur Höhenmessung der Gestirne über dem Horizont genutzt wurde.
[1] Abb. Pendelquadrant.
– Betrachten wir die Winkel der Mondwenden dann ist die goldene Kreisscheibe als Symbol für die Erde in einer Draufsicht und für die Höhenwinkel in einer Seitenansicht zu sehen.Somit gibt es zwei Ansichten desselben Symbols und die Erde ist vermutlich als dreidimensionale Kugel erkannt worden, wie wir sie schon bei der Mondfinsternis wahrgenommen haben!
___________________________________________
[1] Abb. Pendelquadrant. Gerstenberg Verlag (2003). Astronomie- Die Geheimnisse des Universums; aus der Reihe: sehen – staunen- wissen.
„In der 3. Herstellungsphase der Himmelsscheibe wurde ein goldener Bogen ergänzt, an dessen Längsseiten kurze Kerbstriche eingeschlagen wurden, die die Sonnenstrahlen symbolisieren könnten. -Nur die Sonne kann sichtbare Strahlen und Wärme hervorbringen.
Betrachten wir diesen Sonnenbogen in Bezug zur ganzen Himmelsscheibe, dann steht der Beobachter wieder in der Mitte der Himmelsscheibe, die diesmal die Erde wäre und um ihn herum ist der Horizontkreis.
Der östliche Horizontbogen entspricht dem Sonnenaufgang, der Sonnenbogen dem Höchststand, die Kontur des fehlenden Horizontbogens dem Sonnenuntergang und der Rand ohne goldene Elemente, der Seite, an der niemals die Sonne zu sehen ist (der Nachtbogen der Sonne).
Denselben vier Randbereichen können wir auch ein ganzes Sonnenjahr mit unterschiedlich hohen Tagesbögen der Sonne zuweisen: Frühling, Sommer, Herbst und Winter.
Der Sonnenbogen selbst könnte den Jahreslauf der Sonne, mit den unterschiedlichen Tageslängen und Umlaufhöhen symbolisieren: In das Goldblech wurden zwei parallel laufende Linien eingeritzt, wodurch drei Bögen entstanden. Vom unteren Rand bis zur ersten Linie könnte der schmale Bogen die niedrigen und kurzen Sonnentagesbögen des Winters zeigen. Der mittlere Bogen würde dann die länger oder kürzer werdenden Tage, bis oder von den Äquinoktien, andeuten und der breiteste Bogen, die langen Sommertagesbögen, die in der Mitte dieses Randviertels zur Sommersonnenwende im Juni ihren absoluten Höhepunkt finden. Die Bögen und Linien werden von innen nach außen nicht nur immer länger, sondern auch immer dicker. – Ordnen wir den elf Löchern über dem Sonnenbogen nun jeweils einen Monat zu, erreicht der Sonnenbogen etwa Mitte Juni seinen Höchststand.
Der goldene Sonnenbogen enthält auch einige versteckte Hinweise und Beziehungen. So schneidet die Verbindungslinie zwischen seinen Enden den Meridian in unserem unsichtbaren Nordpol! Dies der 3. unabhängige Hinweis auf den Nordpol ! Zudem zeigt ein lineares Ende des Sonnenbogens wieder auf die Mitte der goldenen Kreisscheibe, während das andere Ende, so vermutet Harald Gränzer, auf den eigenen Mittelpunkt seines Außenkreises weisen könnte. Dieser Kreis und der Schattenradius der Sichel haben exakt den gleichen Durchmesser und die Verbindungslinie zwischen den Mittelpunkten bildet, mit der Geraden des Sonnenbogens, einen rechten Winkel.
Aufgrund dieser Auffälligkeit entwickelte Dr. Burkhard Steinrücken >Die dynamische Interpretation der Himmelsscheibe von Nebra<: „Die mathematische Analyse der Form und Lage der Bildsymbole auf der Himmelsscheibe lässt auf eine erstaunliche Vielfalt von Symmetrien und geometrischen Prinzipien bei ihrer Gestaltung schließen. Durch Anpassung von Kreisen und Ellipsen nach der Methode der kleinsten Abstandsquadrate an den Scheibenrand, die Segmente und die runden Bildsymbole, erhält man ein Geflecht sich berührender und durchdringender Kreise und Ellipsen. … Die mathematische Struktur dieses Ringsystems legt nahe, die Scheibe als Sinnbild für einen Mechanismus aus rollenden Kreisen zu interpretieren, der die räumlichen und zeitlichen Aspekte des Sonnenjahres und die Sichtbarkeit der Plejaden in den verschiedenen Jahreszeiten auf der geographischen Breite der Fundgegend in einer faszinierenden geometrischen Formensprache korrekt darstellt. … Der Mechanismus stellt das Sonnenjahr und seine Teilung in Einheiten gleicher Länge dar.“[1]
[1]Burkhard Steinrücken (2010), Die Dynamische Interpretation der Himmelsscheibe von Nebra. In: Harald Meller: Der Griff nach den Sternen – Internationales Symposium in Halle (Saale) 16. – 21. Februar 2005. Seite 935 – 945.
Die tagesgenaue Wiederkehr im Sonnen- und Mondlauf, mit derselben Erscheinung und an derselben Stelle, wurde in Stonehenge durch zwei Hufeisenformationen feierlich in Szene gesetzt.
Die 5 hufeisenförmig angeordneten und unterschiedlich hohen »Trilithentore« stellen, wie die drei geritzten Bögen des goldenen Sonnenbogens auf der Himmelsscheibe von Nebra, den Jahreslauf der Sonne dar: von den niedrigen Tagesbögen im Winter, über die mittleren Bögen um die Äquinoktien, bis zu den hohen Sommerbögen mit der Sommersonnenwende und zurück; oder den Winter, den Frühling, den Sommer, den Herbst, wieder den Winter und dazwischen liegt mitten im Sommer, vom Fersenstein aus in Blickrichtung Sonnenuntergang zur Wintersonnenwende, der Jahresanfang, der Beginn des neuen Sonnenjahres und des Lunisolarjahres.
Die 19 Blausteine des Hufeisens zeigen die Jahre an, die es dauert bis das Licht des Vollmondes bei seinem Aufgang zur Wintersonnenwende wieder genau auf den Altarstein scheint, 9-9→1. Denn der Mond verändert täglich seine Lichtgestalt und dabei wandert er zugleich von Westen nach Osten durch den Tierkreis, wobei er täglich in der Nähe eines anderen Sterns steht. Daher ist ein Vollmond erst nach 19 Jahren und etwa 2 Stunden wieder tagesgenau in derselben Gestalt neben demselben Stern zu sehen oder an derselben Stelle des Tierkreises. Diesen Mondzyklus nennt man Metonischen Zyklus, da er um 450 v. Chr. von dem Athener Meton errechnet wurde.
Lionel Sims hat auf ein weiteres spektakuläres Ereignis hingewiesen, dass nur vom Fersenstein aus beobachtet werden konnte. Etwa alle 19 Jahre strahlte für jeweils 6 Monate vor und nach der Kleinen Mondwende, also ein ganzes Jahr lang, einmal pro Monat das Licht des untergehenden Mondes durch das obere der beiden Fenster, die sich vom Fersenstein aus gesehen scheinbar im hohe »Trilithentor« öffnen. [1]
Zudem könnten die 19 Steine dieser Formation auch eine Zahlenfolge aus 9 und 10 für die Beobachtung der Mondwenden mit ihren Finsterniserscheinungen enthalten.
[1] Aus dem Film: Stonehenge – Sternenkult der Steinzeit, NDR 2003.
Zum Zeitpunkt der Beerdigung der Himmelsscheibe stimmen vermutlich die zeitlichen Erscheinungen und Beziehungen der Sterne, sowie deren möglichen Bedeutungen, schon nicht mehr genau mit den Sternensymbolen der Himmelscheibe überein.
Der Schöpfer der Himmelsscheibe hatte den Mechanismus einer kompletten Sternenuhr entdeckt.
Das ganz besondere an dieser Uhr war, dass im ersten Himmelsviertel die >Zeigersterne< Vega und Deneb, im Zweiten Procyon und Altair, im Dritten Deneb und Spica, sowie im Vierten Altair und Procyon, jeweils in Horizontnähe standen. Die Sterne begrenzten, in Kombination mit den beiden großen Ost-West- und Nord-Süd-Konstellationen der Himmelsscheibe, vier größtmögliche >Himmelsfenster< mit jeweils exakt 6 Stunden Zeitabstand!!Es sind 4 komplette Himmelsansichten räumlich und zeitlich exakt abgesteckt! Somit konnte der Schöpfer der Himmelsscheibe von Nebra der Nachwelt einen ziemlich exakten Zeitpunkt hinterlassen, wann die Scheibe hergestellt wurde. Von 1950 bis 1600 v. Chr. hatten sich die vier >Himmelsfenster< mit der Sternenuhr verschoben und auch ein Teil der Ekliptiksterne und der Nordzeiger wurden in ihren Verwendungen ungeeigneter. Denn durch die Präzession verschieben sich besonders die Sterne in Pol- und Äquatornähe. Der helle Zirkumpolarstern Vega näherte sich dem Horizont und wenn ein Höhenzug Richtung Norden war, könnte er sogar unterläufig geworden sein, da er schon bei nur etwa 0,03° Altitude, direkt über dem am Horizont, sichtbar war. Am meisten fiel die Präzessionsbewegung aber vermutlich bei Altair und Procyon auf, als ihre heliakischen Auf- und Untergänge sich zeitlich auffällig um einen Tag verschoben hatten.
Es wird in der Frühbronzezeit, um 1.950 v. Chr. in Mitteldeutschland, nicht nur einen Warenaustausch, sondern auch einen Wissensaustausch gegeben haben! Denn einige astronomische Erkenntnisse der Himmelsscheibe wurden beispielsweise mindestens um 2.300 v. Chr. in Stonehenge, in Südengland und um 2.500 v. Chr. im alten Ägypten umgesetzt. Die Babylonier hatten um 2.500 v. Chr. sogar schon eine Keilschrift entwickelt, so dass sie ihre umfangreichen astronomischen Beobachtungen notiert konnten. Wenn als Deutung der Himmelsscheibe eine babylonische Schaltregel akzeptiert wird, dann können wir doch dem Schöpfer der Himmelsscheibe auch einen Großteil des damaligen babylonischen Wissens zutrauen. Allerdings fand vermutlich kein kompletter Wissensaustausch statt, da das astronomische Wissen sehr komplex ist und es sich zudem, zumindest teilweise, um eine Art Geheimwissen handelte. Daher wurden vermutlich eher astronomische Grundelemente aus verschiedenen Regionen durch eigene Beobachtungen ergänzt und mit religiösen oder machtpolitischen Zeremonien ausgeschmückt.
„2.750 v. Chr. herrschte König Gilgamesch über Uruk, die erste Großstadt der Geschichte, mit 25.000 Einwohnern. Der Herrscher der Stadt war zugleich ihr oberster Priester, der das Leben aller durch einen Kalender regelte. Dem einfachen Volk genügte vorerst der Mond als Zeitweiser, und wenn es an der Zeit war, den Göttern zu danken oder sie um neue Wohltaten zu bitten, sagten es ihnen die Priester. Sie beschäftigten sich besonders mit dem Geschehen am Himmel und wussten bereits um 2.500 v. Chr., dass Sonne, Mond und Planeten auf geschlossenen Bahnen durch den Tierkreis ziehen. Die vier Jahreseckpunkte konnten sie sowohl mit dem Schattenstab, dem Gnomon, als auch aus der Stellung der Gestirne bestimmen. Ihre geheimes Wissen notierten sie auf tausenden Keilschrifttafeln, die unter anderem einen Katalog von 66 Gestirnen und eine Omensammlung mit etwa 7000 Vorzeichen enthalten.” [1]
„Im gesamten ägäischen Raum gibt es weder bildliche Parallelen für die Himmelsscheibe aus Nebra. Aber, was wir auf der Himmelsscheibe und an den Schwertern aus demselben Fundkomplex aus Nebra finden, ist in Europa vor allem aus der Ägäis bekannt, nämlich die Technik der Tauschierung. Da diese von den Mykenern aus dem Nahen Osten übernommene Technologie jedoch in Mykene weiterentwickelt war als in Nebra, muss wiederum kein direkter Kontakt angenommen werden.“ [2]
„Schatzjagd an der Seidenstraße (Erstausstrahlung 21.09.2013, 20:15 Uhr)
Die größte Handelsroute verlief einst auch durch die Taklamakan, die zweitgrößte Sandwüste der Welt. Von der alten Hauptstadt Xian bis ans Mittelmeer reichte die Verbindung. In der Taklamakan wurde jetzt ein Mumienfriedhof mit 200 Mumien aus prähistorischer Zeit entdeckt und von chinesischen Archäologen systematisch untersucht. Bis zu 4.000 Jahre sind sie alt und sie tragen europäische Gesichtszüge. Der chinesische Archäologe Idris Abdursul und Victor Mair geben verschiedene DNA zur Untersuchung in Auftrag, in China und Europa. Das chinesische Team kommt zu einem Ergebnis: Die Mumien tragen europäische Gene in sich. Die DNA weist die Spur jener Völker nach, die vermutlich aus der Schwarzmeerregion nach Europa einwanderten. Die Analyse beweist, dass es bereits vor 4000 Jahren Kontakte zwischen Ost und West gab. Menschen aus der Schwarzmeerregion nahmen denselben Weg, wie später Händler der Seidenstraße. Jetzt müssen wir nicht mehr raten und rätseln, was in der Bronzezeit abgelaufen ist. Jetzt wissen wir es. Das Volk, zu dem die Mumien gehören, schlägt schon in der Bronzezeit eine Brücke zwischen Ost und West, denn es lässt sich nachweisen, dass sie Handel mit den chinesischen Völkern betrieben.” [3]
[1] Hans Lenz (2005), “Universalgeschichten der Zeit”, Kalender
[2] Harald Meller (2005), “Der geschmiedete Himmel” – Reinhard Jung, Mykene und der Norden: Transfer von Artefakten – Transfer von Religionen? [3] http://www.arte.tv/guide/de/047512-000/schatzjagd-an-der-seidenstrasse#details-description
Die chronologische Recherche zur Himmelsscheibe von Nebra, so wie ich sie über Jahre erlebt habe, können Sie über die Titelleiste aufrufen oder auch in den Beiträgen lesen.
An dieser Stelle folgt eine Kurzfassung meiner erweiterten Interpretation der Himmelsscheibe von Nebra aus dem Jahr 2015.
Die weltweit älteste konkrete Abbildung des Sternenhimmels
Die Himmelsscheibe von Nebra gilt als weltweit älteste konkrete Abbildung des Sternenhimmels und sie ist einer der bedeutendsten archäologischen Funde aus der Frühbronzezeit. Sie wurde 1999 auf dem Mittelberg bei Wangen / Nebra in Sachsen-Anhalt gefunden. „Als ältestes mögliches Datum für die Herstellung der Himmelsscheibe erscheint uns der Beginn des 2. Jahrtausends, die Zeit der Mitteldeutschen Fürstengräber, plausibel. Die maximale Nutzungsdauer hätte etwa 400 Jahre, die minimale etwa Jahre betragen. Unstrittig ist, dass die Himmelsscheibe zusammen mit den Beifunden um 1600 v.Chr. deponiert wurde”(Meller, 20051Meller, Harald (2005). Der geschmiedete Himmel. In: Der geschmiedete Himmel. Konrad Theiss Verlag. Und www.lda-lsa.de).
In einer ersten Herstellungsphase wurden auf der Bronzescheibe 32 Sterne, eine Sichel und eine Kreisscheibe aus dünnem Goldblech eingelegt. Später sind noch drei goldene Bögen ergänzt sowie Löcher am Rand eingeschlagen worden.
Sternenauf- und Untergänge am Horizontkreis
Stellen wir uns gedanklich in die Mitte der Himmelsscheibe von Nebra, nehmen wir den Horizont als einen liegenden Kreis um uns herum wahr, an dem alle Gestirne auf- und untergehen. Die zwei goldenen Randbögen der Himmelsscheibe (siehe in der vorherigen Abbildung, Phase 2) werden offiziell als Pendelbereiche der Sonnenauf- und Untergänge gedeutet und ihre Enden bezeichnen die Sonnenwenden. Auch der Tierkreisbilder scheint ähnlich am Horizont zu pendeln. Aber die einzelnen Tierkreissterne umkreisen den Nordpol natürlich, wie alle Fixsterne, immer in Parallelbögen.
Die zeitliche Reihenfolge ihres Erscheinens oder Untergangs kann dazu genutzt werden die Region der Bahnen von Sonne, Mond und Planeten zu beobachten. Zudem verläuft die Ekliptik, als gedachte Linie, etwa mittig vor dem Tierkreishintergrund. Dabei handelt es sich um die immer gleichbleibende wahre Bahn der Erde um die Sonne. Jedoch von der Erde aus gesehen erscheint sie, aufgrund der Neigung der Erdachse, als veränderliche Bahn der Sonne.
Die vier Extremstellungen des Tierkreises und dazwischen die fünf mit bloßem Auge sichtbaren Planeten sowie Sonne und Mond
Die in der Zeichnung orange markierten Sterne könnten die Sternenpaare darstellen, die in vielen Nächten etwa die Extremstellungen der Sonne kennzeichneten. Diese Paare erschienen an den Solstitien und Äquinoktien ungefähr zeitgleich an den entsprechenden Stellen über dem Horizont. Aber sie gehörten natürlich erst zur nächsten Extremstellung der Ekliptik, da die Sterne zuvor noch vom Sonnenlicht überstrahlt wurden.
Jeweils ein Stern aus dem Tierkreis zeigte den Anfang der Ekliptik auf der östlichen Seite an und ein anderer Stern das westliche Ende. Somit könnten SPICA / Jungfrau + Hamal / Widder sowie HAMAL / Widder + ZUBENELGENUBI / Waage ungefähr die Hoch- und Flachstellungen des Tierkreises sowie die Horizontorte der Sonne an den Tag-und-Nacht-Gleichen angezeigt haben. Und DENEB ALGEDI / Steinbock + REGULUS / Löwe sowie CASTOR / Zwillinge + NUNKI / Schütze könnten etwa die östliche und westliche Schrägstellungen des Tierkreises mit den entsprechenden Sonnenpositionen der Sonnenwenden gekennzeichnet haben.
Demnach werden die fünf mittleren goldenen Sterne der Himmelsscheibe, in derselben Abbildung grün markiert, die mit bloßem Auge sichtbaren Planeten darstellen, die entlang der Ekliptik ihre Bahnen ziehen.
Die beiden Inneren Planeten, MERKUR und VENUS, werden durch die zwei goldenen Sterne der Himmelsscheibe östlich der Sonne, in Horizontnähe dargestellt. Die drei Äußeren Planeten, MARS, JUPITER und SATURN sind zwischen SONNE und MOND, näher zum Mittelpunkt der Scheibe und somit weiter vom Horizont entfernt angebracht worden. Zu den mit bloßem Auge sichtbaren Wandelsternen werden auch die Sonne und der Mond gerechnet.
Zwei große Sternenkonstellationen auf Himmelsscheibe von Nebra in Blickrichtung Süden
Die sechseckige Sternengruppe symbolisiert den Beginn eines Zeitabschnitts
Auf der Himmelsscheibe ist aber auch die dritte Dimension, der Bogenlauf einiger Gestirne in die Höhe, erfasst worden.
In dem vertikal halbierten südlichen Himmelsgewölbe fehlt noch die Zuordnung für die hier rot markierten Sterne. Je weiter die Sterne vom Horizont entfernt sind, umso nördlicher stehen sie sogleich schon wieder. Dies ist besonders zu erkennen, wenn die Gestirne am Meridian, dem Großkreis, der die Erde durch den Nord- und Südpol umrundet, ihre höchste Stellung erreichen.
Als erstes fallen dem Betrachter sieben eng beieinanderstehende Sterne auf, die nicht nur an die PLEJADEN erinnern, sondern in ihrer Formation auch ziemlich genau der Sternenkonstellation des Wintersechsecks entsprechen. Dabei scheint der Stern in der Mitte des goldenen Sechsecks einen Planeten zu symbolisieren. Dieser ist in der Karte nahe der Ekliptik (rote Linie) zwischen den Tierkreisbildern Zwillinge und Stier zu sehen. Das Sechseck wird gebildet aus: CAPELLA / Fuhrmann, POLLUX / Zwillinge, ALDEBARAN / Stier, PROCYON / Kleiner Hund, RIGEL / Orion und SIRIUS / Großer Hund.
Hinzu kommt, dass um 1950 v.Chr. in Mitteldeutschland der Stern PPROCYON gerade die Nordsüdachse, den Meridian, überschritten hatte. Zeitgleich stand VEGA / Leier genau im Nordpunkt und etwas weiter westlich, war direkt am Horizont DENEB / Schwan zu erkennen. Sie bildeten mit dem Sechseck eine, durch den Nordpunkt zeitlich exakt festgelegte, Nord-Süd-Konstellation.
Auf einer Computerkarte wirken Sternbilder leicht verzerrt, da ein dreidimensionales Ereignis zweidimensional dargestellt wird.
Genau sechs Stunden nach dem Wintersechseck erscheint eine Dreiecks-Konstellation
Exakt 6 Stunden nachdem der Zirkumpolarstern VEGA niedrig über dem Nordpunkt stand, war Procyon gerade noch über dem westlichen Himmelsrand zu sehen. Und zeitgleich war gegenüber, nahe dem Ostpunkt, ALTAIR / Adler aufgegangen. Dieser Stern, bildete mit dem fast im Zenit stehende ARCTURUS / Bärenhüter oder Bootes sowie dem niedrig im Südosten leuchtenden ANTARES / Skorpion ein recht großes Dreieck. Für nur einen kurzen Moment war somit eine größtmögliche Ost-West-Konstellation zu beobachten.
Die Bahn des PROCYON zeigte (ebenso wie auch der Stern ALTAIR und die PLEJADEN), für den nächtlichen Sternenhimmel der Frühbronzezeit, etwa die Halbierung der Himmelskugel und eine mittlere Zeitgrenze an. Der Großkreis des Himmelsäquators könnte demnach bekannt gewesen zu sein.
Acht Zirkumpolarsterne auf Himmelsscheibe von Nebra in Blickrichtung Norden
In Blickrichtung Norden liegt der Nordpunkt sozusagen vor unseren Füßen und darüber umkreisen die Zirkumpolarsterne einen damals sternenlosen Nordpol.
Im Bereich der nördlichen Hemisphäre der Himmelsscheibe fehlt noch die Bedeutung für die hier hellblau markierten Sterne. Da über dem Nordpunkt der Nordpol liegt, ermitteln wir auf dem Fotoposter der Himmelscheibe3Liptak, Juraj. Posterdruck, Druckhaus Schütze GmbH, Halle seine Höhe durch den Mittelpunkt der Kreisbahn des äußersten Zirkumpolarsternes (8) VEGA, die den Meridian nur knapp über dem Horizont quert. Auch durch die anderen sieben Zirkumpolarsterne ziehen wir konzentrische Kreise.
In der Computerkarte sehen wir, dass die Lage der Sterne niemals mit den Positionen der Sterne der Himmelsscheibe übereinstimmt. Aber die ermittelten Sterne überschreiten den Meridian jeweils in Paaren zeitlich nahe nacheinander, und zwar die >ungeraden< vor den >geraden< Partnersternen, wie auf der Himmelsscheibe: (1) KOCAB / Kleiner Wagen + (4) POLARIS / Kleiner Wagen, (3) ALKAID / Großer Wagen + (2) η-DRACHE / Drache, (5) ETAMIN / Drache + (6) ALDERAMIN / Kepheus, (7) ALPHEKKA / Nördliche Krone + (8) VEGA / Leier. Zu den hellsten Zirkumpolarsternen gehören ansonsten nur noch die anderen Sterne des Großen Wagens sowie Arcturus.
Vermessen wir nun die einzelnen Abstände der eingezeichneten Kreislinien und vergleichen sie in ihrem Verhältnis zu den Höhenwinkeln der entsprechenden Sterne im Computerprogramm, stellen wir fest, dass diese Werte ziemlich gut übereinstimmen. Wenn wir VEGA als Horizontstern definieren, folgen auch in der Computerkarte zweimal drei Sterne, die enger beieinander kreisen, etwa zwischen 6 bis 17 Grad und 29 bis 33 Grad, während KOCAB auf etwa 44 Grad den Nordpol umrundet. Die Höhe des Nordpols über dem Horizont entspricht dem jeweiligen Breitengrad; hier 51 Grad.
Zirkumpolarsterne im Meridian und im Zenit zur Bestimmung des Breitengrades
Folgende Reihenfolge und eventuell Höhenwinkel der Sterne sollte man gekannt haben, wenn man in der Frühbronzezeit vom 51. Breitengrad in den Süden oder Norden reiste: VEGA 2°; ALPHEKKA 6°; ALDERAMIN 11°; ETAMIN 17°; POLARIS 29°; ALKAID 32°; η-DRACHE 33°; KOCAB 44° und den Nordpol auf 51°. Die Höhe des Nordpols über dem Horizont ist identisch mit dem Breitengrad des Beobachters. Ein Reisender brauchte sich nur die Höhe des jeweils untersten hellen Zirkumpolarsterns für seinen Heimatort zu merken. Schließlich gehörte dieser, wenn er nach Süden reiste, bald darauf nicht mehr zu den Zirkumpolarsternen. Zudem könnten ALDERAMIN aus der großen Dreiecks–Konstellationoder ARCTURUS am besten geeignet gewesen sein, um als Zenitsterne die Heimatregion anzuzeigen.
Einer der Sternenzeiger zeigte den wahren Nord an
Einige dieser ermittelten Zirkumpolarsterne standen gleichzeitig fast exakt unter dem Nordpol und bildeten Sternenzeiger. Um 1950 v.Chr. waren in Mitteldeutschland zeitgleich (6) ALDERAMIN auf nur 10,8° und (1) KOCAB auf 43,6° in ihren unteren Konjunktionen zu sehen. Mittels dieser Sterne konnte man hervorragend die Nordrichtung bestimmen. Eine solche zeitgleiche Kulmination wurde in Ägypten vermutlich schon um 2467 v.Chr. beim Bau der Pyramiden zur Bestimmung des Wahren Nordens genutzt. Dafür zog man die kürzeste Verbindungslinie durch zwei Zirkumpolarsterne lotrecht zum Horizont (Spence, 20004www.zeit.de/2000/47/Cheops%27_Kompass/seite-3).
5 Zirkumpolarsterne bilden zusammen mit den 2 Konstellationen eine Sternenuhr
Zwischen den Meridiandurchgängen von zwei weiteren Sternenzeigern aus (8) VEGA + (5) ETAMIN + (2) η-DRACHE sowie (4) POLARIS + (3) ALKAID vergehen jeweils genau sechs Stunden! Zeitweise ziehen sie wie alle Sterne auch unsichtbar am Tageshimmel und sie sind somit nur in bestimmten Jahreszeiten zu sehen.
1. Karte: Der Stern (8) VEGA stand direkt im Nordpunkt und bildete mit (5) ETAMIN und (2) η-DRACHE einen Sternenzeiger. Gleichzeitig hatte das Sechseck gerade komplett den Meridian überschritten. Mit HAMAL / Widder und SPICA / Jungfrau in der West- und Oststellung erreichte kurz darauf der Tierkreis seine Hochstellung. 2. Karte: Wenn (4) POLARIS und (3) ALKAID kulminierten, waren PROCYON und ALTAIR gerade etwa 3° über dem Horizont zu erkennen. Der Stern ALTAIR aus dem Adler gehörte zur Großen Dreiecks-Konstellation, die somit vollständig wurde. SPICA hatte soeben den Meridian passiert.
Logischer Weise sehen wir nach jeweils sechs weiteren Stunden die vorherigen Zeigersterne auf dem Kopf stehend, in umgekehrter Reihenfolge.
3. Karte: (2) η-DRACHE, (5) ETAMIN und (8) VEGA standen in ihren südlichen Kulminationen über dem Nordpol. ALTAIR erreichte bald den Meridian und das Dreieck war kurz darauf komplett im westlichen Himmelsviertel zu sehen. CAPELLA aus dem Sechseck war gerade aufgegangen, während SPICA noch kurz vor dem Untergang zu erkennen war. 4. Karte: Wenn der Zeiger aus (3) ALKAID und (4) POLARIS gleichzeitig unter dem Nordpol stand, war PROCYON exakt über dem Ostpunkt zu sehen. Diese drei Sterne bildeten einen rechten Winkel.
Übrigens sind die beiden Goldplättchen für POLARIS und das mehrfach belegte Symbol im Ostpunkt größer als die anderen Sterne der Himmelsscheibe von Nebra!
Erkenntnisse anhand der zwei Sternenzeiger aus Zirkumpolarsternen
An dieser Stelle wird deutlich, dass der Himmel insgesamt als dreidimensionales Gewölbe wahrgenommen wurde. Denn jetzt werden die Blickrichtungen Norden und Süden nicht mehr getrennt beobachtet. Die Nord- und Südansichten auf der Himmelsscheibe dienen lediglich dazu die vielen Informationen zu sortieren und verständlich darzustellen. Daher mussten die Konstellationen aus der Sicht eines aufrechtstehenden Betrachters wiedergegeben werden.
Betrachten wir den kompletten Nachthimmel zum Zeitpunkt eines Sternenzeigers über dem Nordpunkt fällt auf, dass wir die 1. und 2. Sternenkarte schon zuvor kennengelernt haben. Damals hatten wir die großen Nord-Süd- und Ost-West-Konstellationen mit dem Sechseck und dem Dreieck entdeckt. Allerdings kannten wir die Zirkumpolarsterne zu der Zeit noch nicht!
Auf der Himmelsscheibe von Nebra ist eine Sternenuhr oder 4x eine Viertel Umdrehung des Sternenhimmels dargestellt
Der Schöpfer der Himmelsscheibe hatte den Mechanismus einer kompletten Sternenuhr entdeckt. Durch diese harmonische und einmalige Himmelsmechanik ließ sich ein Tag theoretisch in vier gleiche Teile teilen. Aber natürlich überstrahlte das Sonnenlicht je nach Tageslänge zwei oder auch drei Sternenzeiger.
In der längsten Nacht des Jahres, zur Wintersonnenwende, konnten die Sternenzeiger “VEGA im Nordpunkt“ (1. Karte) und “POLARIS unterhalb von ALKAID“ (2. Karte) beobachtet werden. Um die Frühlings-Tag-und-Nacht-Gleiche sah man nur “POLARIS unterhalb ALKAID“ (2. Karte). Zur Sommersonnenwende war nur den Sternenzeiger “VEGA oberhalb des Nordpols“ (3. Karte) sichtbar. Und während der Herbst-Tag-und-Nacht-Gleiche erschienen “ALKAID unterhalb von POLARIS“ (4. Karte) und “VEGA im Nordpunkt“ (1. Karte).
Anhand von Sternenzeigern erkennt man die Tages- und Jahresbewegungen der Fixsterne
Beobachten wir den Nordhimmel in unseren gemäßigten Breiten, in Abständen von etwa einer Stunde, erkennen wir zuerst, dass der Große Wagen und mit ihm alle Gestirne scheinbar einmal pro Tag, entgegen dem Uhrzeigersinn, um den Himmelsnordpol fährt. Für eine Viertelkreisbewegung vergehen genau 6 Stunden. Verfolgen wir aber die Stellung eines Sternenzeigers immer etwa zur selben Nachtstunde im Laufe eines ganzen Sonnenjahres. In dem Fall nehmen wir auch zwischen den Solstitien und den Äquinoktien immer eine Viertel Drehung wahr.
Mit einer Sternenuhr, die den Nordpol als Zentrum hat, erkennt man also am einfachsten die Tages- und Jahresbewegung des Sternenhimmels. Und sogar schon in der Frühbronzezeit konnten die Astronomen an den Stellungen bestimmter Fixsterne die vier Viertel-Himmelsdrehungen ablesen. Oder könnten sogar schon vier Viertel-Tageslänge von Interesse gewesen sein?
4 Minuten Sternenzeit
Ausnahmslos benötigen alle Fixsterne nur rund 23 Stunden und 56 Minuten bis sie wieder ihren Ausgangspunkt, entweder über dem Süd- oder Nordpunkt, erreichen. Doch nur bei den Zirkumpolarsternen ist der >tägliche Umschwung< auch komplett zu sehen. Ein Sternenzeiger wandert also täglich um etwa 4 Minuten (Sternenzeit) zu unserer Uhrzeit weiter.
Alle anderen Sterne gehen jeden Tag 4 Minuten später im Osten auf und im Westen unter.
Die Sonne hingegen benötigt aus geozentrischer Sicht circa 4 Minuten länger, bis sie eine Runde zum südlichsten Fixpunkt zurückgelegt hat. Das liegt daran, dass die Erde das Zentralgestirn in einem Jahr umrundet, also täglich rund 1 Grad der Kreisbahn. Deshalb muss sich unser Planet täglich noch ein Stück über die eigene Umdrehung hinaus weiterdrehen.
Die zeitliche Verfrühung der Sterne fällt uns natürlich nicht auf, da wir keine Sternenbahnen vermessen und wir unsere Uhren nach dem Sonnenlauf richten.
Wurde die Himmelsscheibe von Nebra beerdigt, weil die Sterne auf Grund der Präzession ihre Bedeutung verloren haben?
Das ganz Besondere an dieser Uhr aus Sternenkonstellationen war zudem, dass einige der in den 4 Himmelskarten ermittelten Sterne in direkter Horizontnähe standen. Dadurch öffnete sich jeweils ein größtmöglich definiertes >Himmelsfenster<, das in vielen Nächten nur für einen kurzen Moment sichtbar war!
Da sich durch die Präzession in einem gewissen Zeitraum besonders auffällig die Sterne in Pol- und Äquatornähe verschieben, konnte der Schöpfer der Himmelsscheibe der Nachwelt einen ziemlich exakten Zeitpunkt hinterlassen, wann die Scheibe hergestellt wurde. Von 1950 bis 1600 v.Chr. hatten sich die vier definierten >Himmelsfenster< der Sternenuhr und vor allem auch ein Teil der Tierkreissterne verschoben. Diese Veränderung begrenzt die zeitliche Nutzungsdauer der Himmelsscheibe, die am Anfang dieses Artikels erwähnt wurde. Ebenso wurde der Nordzeiger in seiner Verwendung ungeeigneter.
Somit könnten zum Zeitpunkt der Beerdigung der Himmelsscheibe von Nebra die zeitlichen Erscheinungen und Beziehungen der Sterne nicht mehr zutreffend gewesen sein. Das astronomische Bildprogramm war ungültig, es hatte seine Bedeutung verloren.
Der helle Zirkumpolarstern VEGA stand damals direkt im Nordpunkt auf nur etwa 0,03° Altitude. Deshalb könnte er besonders schnell von einem Zirkumpolarstern zu einem unterläufigen Stern geworden sein. Gleichfalls ist es möglich, dass die Präzessionsbewegung auch bei ALTAIR und PROCYON aufgefallen war. Denn in dem Fall könnten sich ihre heliakischen Auf- und Untergänge zeitlich um einen Tag verschoben haben.
So würden die Sterne der Himmelsscheibe von Nebra vermutlich heutzutage heißen
Nun haben wir den goldenen Sternensymbolen mit an Sicherheit grenzender Wahrscheinlichkeit die entsprechenden Sterne zuordnen können. Schließlich waren die zwei großen Konstellationen sogar zusammen mit Sternenzeiger zu sehen, also mindestens 6 bis 10 Sterne gleichzeitig. Und auch den sternenlosen und daher unsichtbaren Nordpol haben wir definieren können. Dies ist besonders wichtig, da dieser nachfolgend noch zweimal durch andere Ergebnisse eindeutig bestätigt wird! Zudem komplettieren bisher die Tierkreissterne, die Planeten sowie verschiedene Aspekte der Sonne und des Mondes unsere Erkenntnisse um die Himmelsmechanik! …
Zwei zentrale Goldelemente der Himmelsscheibe von Nebra zeigen Eigenschaften von Sonne und Mond
Die beiden großen Goldelemente der Himmelsscheibe zeigen widersprüchliche Aussagen, die vermutlich beabsichtigt sind, um mit nur zwei Symbolen alle sichtbaren Erscheinungsformen von Sonne und Mond aufzuzeigen.
Zu den zwei großen und zentralen Symbolen der Himmelsscheibe von Nebra gibt es verschiedene Hypothesen, die einige charakteristische Merkmale der beiden wichtigsten Gestirne, Sonne und Mond, zutreffend beschreiben.
Unter anderem spricht für die Sonne, dass die Kreisscheibe am Rand eine Strichelung aufweist, die wie eine Korona anmutet (Wunderlich, 20046Wunderlich, Christian-Heinrich (2004). Vom Bronzebarren zum Exponat – Technische Anmerkungen zu den Funden von Nebra. Der geschmiedete Himmel. Konrad Theiss Verlag. S. 40).
Widerspruch: Die visuelle Größe der Mond- und Sonnenscheibe ist von der Erde aus gesehen nahezu identisch. Jedoch wurde die goldene Sichel ungefähr 25% größer als die Kreisscheibe dargestellt.
Zunehmende Mondsichel
Vergleich zweier Mondphasen anhand deren Innen- und Außenradien7Cidadao, Antonio. Fotos von Mondphasen. wiki.astro.com/astrowiki/de/Datei:Mondphasen.jpg
Der Innenradius des Sichelsymbols passt zu der manchmal sichtbaren unbeleuchteten Seite einer 4,5 Tage alten Mondsichel, die in ihrer Größe dem vertrauten Vollmond entspricht und kurz nach Sonnenuntergang im Westen zu sehen ist. Schon bei einer sechs Tage alten Sichel ist der Radius viel größer und elliptisch.
Widerspruch: Durch den Mond (= Sichel + unbeleuchteter Teil) würden die dahinter befindlichen Sterne verdeckt. Auf der Himmelsscheibe dürften innerhalb des blauen Kreises keine goldenen Sterne dargestellt sein.
Mondfinsternis
Mondfinsternis8Birkner, Alexander. Foto einer Mondfinsternis. www.kernschatten.info/home.htm
Da auf der Himmelsscheibe die Sichel größer dargestellt ist als die Kreisscheibe, könnte sie auf das besondere und seltene Ereignis eines sich verfinsternden Vollmondes hinweisen. Eine Mondfinsternis findet immer bei Vollmond statt, wenn der Mond gerade im Osten aufgeht und die Sonne im Westen untergeht oder andersherum. Die Sonne steht also genau gegenüber vom Mond und die Erde steht (wir stehen) dazwischen. Also muss sich etwas vor das Sonnenlicht schieben, damit der Mond die Sonnenstrahlung nicht mehr reflektieren kann. Der aufziehende Mondschatten kann somit nur der Schatten der Erde sein, weil diese (mit dem Beobachter) mittig zwischen Sonne und Mond steht und diese ist dann rund!
Widerspruch: Auf der Fotomontage mit der Mondfinsternis sieht man im direkten Vergleich, wie riesig der Erdschatten ist, und dass dieser nicht zum Innenradius der goldenen Sichel passt.
Sonnenfinsternis
Die goldene Sichel hat vor allem auch Eigenschaften, die auf eine totale Sonnenfinsternis hinweisen. Vollendet man den Außenradius der Sichel, ist dies die komplette Kreisform des Gestirns, egal ob Mond oder Sonne. Damit sind in jedem Fall die fünf dahinter befindlichen Sterne verdeckt!
Der Zeitpunkt, wann in der Bronzezeit eine partielle oder totale Finsternis eintrat, lässt sich aufgrund der ungleichmäßigen und unberechenbaren Erdrotation nicht genau bestimmen. Die Wahrscheinlichkeit, dass der Fürst von Leubingen, der um 1942 v.Chr. beigesetzt wurde, auch eine zentrale Sonnenfinsternis gesehen haben könnte, ist aber durchaus gegeben.
Sonnenfinsternis vom 31. August 1932. Foto: Robert Henseling.
„Das Foto zeigt die totale Sonnenfinsternis vom 31. August 1932 sowie die Planeten Jupiter, Merkur, Venus und Mars (von links nach rechts) am verdunkelten Taghimmel“ (Henseling, um 19329Henseling, Robert (um 1932). Kosmische Heimat. Verlag der Eiserne Hammer.). Wie auf der Himmelsscheibe sind bei einer Sonnenfinsternis Gestirne sichtbar, die eigentlich unsichtbar sind!! Dieser Widerspruch hebt sich nur bei einer Sonnenfinsternis auf!
Widerspruch: Bei einer Sonnenfinsternis ist die verdunkelnde Mondscheibe etwa so groß wie die Sonne, da aber der Innenradius der goldenen Sichel viel größer ist, kann es sich doch nicht um eine Sonnenfinsternis handeln.
Die beiden Randbögen der Himmelsscheibe von Nebra symbolisieren die Auf- und Untergangsbereiche von Sonne und Mond
Pendelbereiche der Sonne am Horizontkreis
„Die beiden randlichen Objekte der Himmelsscheibe von Nebra, von denen nur eines erhalten ist, deuten wir als sogenannte Horizontbögen, sie zeigen die Pendelbereiche der Sonne. … Aus den 29 Randlöchern und unkorrodiert erscheinenden Randpartien wurde der Scheibenmittelpunkt M abgeleitet. … Der Winkel von M nach C und D ist etwa 5 – 6 Grad kleiner als nach A und B; er entspricht dem optisch wahrgenommenen Unterschied der Sonnenauf- und Untergänge. Aus astronomischer Sicht würde das bedeuten, dass auf der Scheibe Norden oben und Süden unten ist. Aus dem Winkel der Horizontbögen von 81 – 82 Grad ergibt sich eine geografische Breite für den optimalen Nutzungsort der Himmelsscheibe. Sie verläuft etwa durch Magdeburg (52. Breitengrad), liegt also leicht nördlich vom Fundort“ (Schlosser, 200510Schlosser, Wolfhard. Die Himmelsscheibe von Nebra – Astronomische Untersuchungen. Der geschmiedete Himmel. Konrad Theiss Verlag.). Durch die Horizontbögen lassen sich laut W. Schlosser exakte Himmelsrichtungen festlegen. Aber diese vertauschen unsere bisher ermittelt Richtungen, Norden mit Süden und Osten mit Westen.
Für die unterschiedlichen Zuordnungen der Himmelsrichtungen gibt es nur eine sinnvolle Erklärung:
Die Goldbögen symbolisieren die Bewegungen Sonne am Tage. In der Nacht hingegen, auf der anderen Seite der Erdkugel, herrschen die Sterne. Und der Mond ist ein Wandler der beide Bereiche miteinander verbindet und komplett passieren kann.
Pendelbereiche des Mondes am Horizontkreis
Harald Gränzer11Gränzer, Harald. Das goldene Tor der Ekliptik. www.analogika.info/nebra/interpret.html hat festgestellt, dass „die beiden Horizontbögen jeweils an ihren beiden Enden durch deutlich lineare Abschlüsse begrenzt werden. Diese Begrenzungen weisen alle deutlich in eine einzige Richtung. Die einzige Ausnahme bildet der nördliche Abschluss des östlichen Bogens, der in drei linearen Begrenzungen abschließt.“
Norbert Gasch12Norbert Gasch, Eine vollständige Interpretation. www.astronomie.de/bibliothek/artikel-und-beitraege/himmelsscheibe-von-nebra/eine-astronomische-interpretation/ schreibt: „Jetzt zeigt sich, dass sich diese Randbögen auch anders interpretieren lassen, und zwar als Mondwenden. … Geht man indessen davon aus, dass die auffällige runde Markierung, allgemein als Sonne verstanden, das Zentrum der Betrachtung darstellt, wodurch man sich durch die Führung der oberen und unteren radialen Kanten der beiden Bögen auch veranlasst sehen kann, so ergeben sich zwei Winkel, die 109 und 66 Grad weit sind. Die mathematische Berechnung führt im Mittel zu einer geographischen Breite von 53,5 Grad, die refraktions- und parallaxenbereinigt etwa 52,6 Grad Nord ergibt.“
Anmerkungen: Mathematische Berechnungen der geographischen Breite können nur ein ungefähres Ergebnis liefern, da die Höhe des Horizontrandes mit eingerechnet werden muss. Allerdings wissen wir bisher nicht, wo die Himmelsscheibe von Nebra tatsächlich gefertigt wurde. Und die von Norbert Gasch berechneten Winkel der Mondwenden kann man nur von der Erde aus. Doch er ermittelt sie vom Zentrum der Kreisscheibe, die allgemein als Sonne interpretiert wird.
Unterschiedliche Indizien sprechen dafür, dass man sich die goldene Kreisscheibe auch als Erde vorzustellen muss.
Vom Mittelpunkt der Kreisscheibe lassen sich drei 30 Gradwinkel, der Zenit und der Nordpol auf 51 Grad ermitteln
In einer Abbildung der Himmelsscheibe von Nebra kennzeichnen wir wieder die uns inzwischen bekannte Stelle des Nordpols und ziehen von dort eine Verbindungslinie zum Mittelpunkt der Kreisscheibe. Von diesem Mittelpunkt ausgehend tragen wir 51° vom Nordpol nach rechts ab und zeichnen die Horizontlinie. Und von der anderen Seite des Himmelspols ermitteln wir 39° entfernt den Zenit. Durch ihn erstreckt sich eine Verbindungslinie vom Mittelpunkt der goldenen Scheibe exakt bis zu einem Ende einer linearen Begrenzung des Horizontbogens! Daran schließen sich drei 30°-Winkel an, die ebenfalls durch Verbindungslinien zu den Spitzen der Sichel oder deren Mittelpunkt begrenzt sind.
Der Viertelkreis mit den 30°-Segmenten erinnert an einen Quadranten, der zur Höhenmessung der Gestirne über dem Horizont genutzt wurde. Denn, knicken wir eine Abbildung der Himmelsscheibe an der Horizontlinie und falten den >dunklen Nachtbogen der Sonne< nach hinten weg, so erhalten wir einen Querschnitt durch das Himmelsgewölbe. Wir blicken sozusagen nach Westen. Danach falten wir die Abbildung noch an der Linie, die durch den Zenit führt . Dadurch wird der Halbkreis jedoch nicht mittig geteilt. Aber dafür erhalten wir abschließend ein nahezu perfektes 90°-Kreissegment, das in drei 30°-Winkel unterteilt ist.
Vielleicht wurde die goldene Sichel größer als die Kreisscheibe dargestellt, um den Nordpol, den Zenit und die Höhenmessung der Gestirne darzustellen.
Fazit: Die goldene Kreisscheibe im Zentrum der Himmelsscheibe symbolisiert neben der Ansicht von Sonne und Mond auch eine Aufsicht auf die Erde. Demzufolge wurde vom Standort im Zentrum des Horizontkreises die Höhe des Nordpols auf 51° ermittelt; also vom 51. Breitengrad aus! Die Höhe des Nordpols über dem Horizont ist identisch mit der geographischen Breite am Standort des Beobachters. Außerdem waren die Winkelabstände 90° beziehungsweise 3x 30°, jeweils vom Horizont in Richtung Zenit, von Interesse.
Der gefiederte Goldbogen der Himmelsscheibe von Nebra scheint den Jahreslauf der Sonne darzustellen
Der nachträglich ergänzte Goldbogen könnte für den Jahreslauf der Sonne, mit den unterschiedlichen Tageslängen und Umlaufhöhen stehen: Die eingeschlagen kurzen Kerbstriche an den Längsseiten könnten Sonnenstrahlen andeuten. Und durch die zwei ins Goldblech eingeritzten parallellaufenden Linien entstehen drei Bögen, die von innen nach außen immer länger und dicker werden. Der Bogen vom unteren Rand bis zur ersten Linie könnte die niedrigen und kurzen Sonnentagesbögen des Winters, der mittlere Bogen die länger oder kürzer werdenden Tage bis oder von den Äquinoktien und der breiteste Bogen die langen Sommertagesbögen symbolisieren!
Um die auffällig schiefe und asymmetrische Stellung des goldenen Sonnenbogens zu untersuchen, stellen wir uns wieder in die Mitte der Himmelsscheibe und um uns herum ist der Horizontkreis. Der östliche Horizontbogen entspricht dem täglichen Sonnenaufgang, der Sonnenbogen dem Höchststand, die Kontur des fehlenden Horizontbogens dem Sonnenuntergang und der Rand ohne goldene Elemente, der Seite, an der niemals die Sonne zu sehen ist (der Nachtbogen der Sonne).
Wenn wir denselben vier Randbereichen die Jahreszeiten zuweisen erreicht der Sonnenbogen in der Mitte des Lochabschnittes >Sommer< seinen Höchststand. Ordnen wir diesen elf Löchern nun jeweils einen Monat zu, stellen wir fest, dass die Schiefstellung des Sonnenbogens in Bezug zur Lebensenergie auf der Erde gesehen werden könnte. Denn je mehr sich der Bogen dem Rand nähert, umso größer ist die Helligkeit und vor allem die Wärme oder Intensität der Sonne, in Bezug zu den entsprechenden Monatslöchern.
Weitere versteckte Hinweise und Beziehungen des Sonnenbogens
Die Verbindungslinie zwischen den Enden des kreisförmigen Goldbogens schneidet den Meridian in unserem unsichtbaren Nordpol!
Dies ist der 3. unabhängige Hinweis auf den Nordpol!
Außerdem meint Harald Gränzer13Gränzer, Harald. Das goldene Tor der Ekliptik. www.analogika.info/nebra/interpret.html, dass ein lineares Ende des Sonnenbogens wieder auf die Mitte der goldenen Kreisscheibe zeigt. Und das andere Ende könnte auf den eigenen Mittelpunkt seines Außenkreises weisen. Dieser Kreis und der Schattenradius der Sichel haben exakt den gleichen Durchmesser und die Verbindungslinie zwischen den Mittelpunkten bildet, mit der Geraden des Sonnenbogens, einen rechten Winkel.
Aufgrund dieser Auffälligkeit entwickelte Burkhard Steinrücken Die dynamische Interpretation der Himmelsscheibe von Nebra14Steinrücken, Burkhard (2010). Die Dynamische Interpretation der Himmelsscheibe von Nebra. Der Griff nach den Sternen – Internationales Symposium in Halle (Saale) 16.–21. Februar 2005. S. 935–945.: „Die mathematische Analyse der Form und Lage der Bildsymbole auf der Himmelsscheibe lässt auf eine erstaunliche Vielfalt von Symmetrien und geometrischen Prinzipien bei ihrer Gestaltung schließen. …”
Lochgruppierungen am Rand der Himmelsscheibe von Nebra könnten auf ein Kalendersystem hinweisen
Elf Mondmonate zu rund 29,5 Tagen
Die Löcher, die in der letzten Herstellungsphase eingeschlagen wurden, könnten für Markierungen genutzt worden sein, um die Tage und Mondmonate von einem Sonne-Mond-Jahr zu zählen. Sie sind durch die Horizontbögen in die Zahlengruppen 9, 11, 9, 10 eingeteilt.
Wir legen für den nachfolgenden Zählkalender den Kalenderbeginn, wie heutzutage, auf den 1. Januar, da sich dieser Termin als am zutreffendsten herausgestellt hat. Am ersten Tag stecken wir eine Nadel in das erste Loch unten am noch vorhandenen Horizontbogen und zählen 29 Tage nach rechts ab (9, 11, 9, 11, 9– orangene, grüne und rote Zahlengruppen). Da aber ein Monat 29,5 Tage hat, müssen wir zusätzlich mit einer Nadel am unteren Rand (blaue Zahlen) den fehlenden halben Tag festhalten. Für einen ganzen Mondmonat stecken wir nun eine >Monatsnadel< in das erste Monatsloch, links nach dem oberen Ende des goldenen Horizontbogens (grüne Zahlen).
Jeden 2. Monat werden, nach 29,5 Tagen, die zwei Nadeln der halben Tage entfernt und als zusätzlicher Tag gezählt. Der 2., 4., 6., 8. und 10. Monat hat also 30 Tage, wodurch die Lichterscheinungen des Mondes immer gleichbleiben. Es ist also auch möglich Vollmond, Halbmond oder Neumond im ersten Monat mit einer eigenen Markierung zu versehen, da sie für ein Sonnenjahr gültig bleiben und nicht weitergerückt werden müssen. Auf diese Weise setzen wir die Nadeln weiter bis die Monatsnadel im elften Loch steckt und 6x 29 + 5x 30 Tage, also 324 Tage, vergangen sind. Unser 21. November wäre damit der Beginn des 12., des dunkelsten Monats.
Der zwölfte Monat und elf besondere Tage
Da aber für den zwölften Monat kein Loch mehr in der Nähe des Sonnenbogens vorgesehen ist, müssen die 30 Tage und die 11 fehlenden Tage zum Sonnenjahr zusammengezählt werden. Für diese 41 Tage bieten sich zwei Steckmöglichkeiten an. Entweder zählen wir die Monatstage zuzüglich des 30. Tags, wie gewohnt und ergänzen die 11 Monatslöcher als Tage. Oder wir verlängern gedanklich den zum Ende hin abgeflachten äußeren Kreisbogen des Sonnenbogens und treffen dieser Linie folgend auf das untere Ende des nicht mehr vorhandenen Horizontbogens. Dort zählen wir zuerst die 10 dunkelsten Tage am unteren Rand der Bronzescheibe in Richtung Sonnenaufgang, wandern 9 Tage lang den Morgendämmerungsbogen hinauf und beenden den Monat mit den 11 Tagen oberhalb des Sonnenbogens. Bei dieser Zählweise entspricht der letzte Tag der Mondmonate der Wintersonnenwende, von dem aus die 11 zusätzlichen Tage zum Sonnenjahr noch einmal beim Sonnenbogen gezählt werden.
An diesen Tagen könnte die Vollendung des Jahres und der Sieg der Sonne über die Dunkelheit gefeiert worden sein. Sie können dem alten oder dem neuen Jahr zugerechnet worden sein, denn entweder begann das neue Jahr zur Wintersonnenwende oder am >1. Januar<.
Der Steinkreis von Stonehenge könnte wie die Himmelsscheibe von Nebra ein Kalendersystem aufzeigen
Stonehenge könnten von Sonnen- und Mondanhängern, auch als gemeinsam genutzter heiliger Ort, zur Darstellung ihrer Kalendersysteme errichtet worden sein: Denn die Sarsensteine hatten bei ihrer Errichtung einen natürlichen rötlichen Schimmer, was auf einen Bezug zur Sonne hinweisen könnte. Die Blausteine stammen alle aus einem Quellgebiet und könnten, ebenso wie der grünliche Altarstein von der Küste, die Mondeigenschaften symbolisieren, da der Mond einen sichtbaren Einfluss auf das Wasser hat.
Ein reines Sonnenjahr könnte an den 30 Sarsensteinen in ganzen Tagen eines aufgerundeten Monats gezählt worden sein. Einen reinen Mondkalender würde man anhand der Erscheinungsform des Mondes zählen, aber dann müsste allerdings etwa alle 4 Jahre ein Schalttag einfügt werden.
Ein gebundenes Mondjahr oder Lunisolarjahr könnte man auf verschiedene Methoden mittels der 60 Blausteine im Vollkreis gezählt haben. Dazu brauchte man beispielsweise nur die Öffnungen hin- und zurückzählen und zu den 354 Tagen die 10 Sarsensteine und den Altarstein ergänzen.
Die Blausteine im Hufeisen könnten die großen oder kleinen Mondwenden anzeigen, die alle 18,6 Jahre stattfinden und am besten zum ganzzahligen Zählrhythmus von 9-10-10-9-9-10 … passen (wie die Lochabschnitte auf der Himmelsscheibe). In diesem Rhythmus blieben auch die Finsterniserscheinungen von Sonne und Mond über einer bestimmten Visierlinie für etwa 300 Jahre nahezu gleich.
Wunderlich, Christian-Heinrich (2004). Vom Bronzebarren zum Exponat – Technische Anmerkungen zu den Funden von Nebra. Der geschmiedete Himmel. Konrad Theiss Verlag. S. 40
7
Cidadao, Antonio. Fotos von Mondphasen. wiki.astro.com/astrowiki/de/Datei:Mondphasen.jpg
8
Birkner, Alexander. Foto einer Mondfinsternis. www.kernschatten.info/home.htm
9
Henseling, Robert (um 1932). Kosmische Heimat. Verlag der Eiserne Hammer.
10
Schlosser, Wolfhard. Die Himmelsscheibe von Nebra – Astronomische Untersuchungen. Der geschmiedete Himmel. Konrad Theiss Verlag.
Steinrücken, Burkhard (2010). Die Dynamische Interpretation der Himmelsscheibe von Nebra. Der Griff nach den Sternen – Internationales Symposium in Halle (Saale) 16.–21. Februar 2005. S. 935–945.
Zuerst wurden 32 Sternensymbole, eine Kreisscheibe und eine Sichel aus Goldblech in die Bronzescheibe eingelegt. Dann ergänzte man an zwei gegenüberliegenden Seitenrändern goldene Randbögen, die drei Sterne verdeckten. Danach wurde ein goldener kreisrunder Sonnenbogen hinzugefügt, an dessen Längsseiten kleine Kerbstriche zu sehen sind. Zum Schluss sind am Rand der Bronzescheibe Löcher eingeschlagen worden, die auch in den vorhandenen Goldbögen zu sehen sind. Irgendwann ging einer der beiden Randbögen verloren oder er wurde entfernt, was als weitere Phase gilt.
Die Sternenpaare, die in der Zeichnung der Himmelsscheibe orange markiert und durch Linien miteinander verbunden sind, könnten jeweils den Anfang und das Ende der Extremstellungen des Tierkreises anzeigen.
Jeweils zwei helle Sterne aus dem Tierkreis waren in den Nächten der Solstitien und Äquinoktien, ungefähr zeitgleich nach Sonnenuntergang, im Osten und Westen zu sehen: Spica / Jungfrau + Hamal / Widder Hamal / Widder + Zubenelgenubi / Waage Deneb Algedi / Steinbock + Regulus / Löwe Castor / Zwillinge + Nunki / Schütze
Zwei von den in der Zeichnung grün markierten Sternen scheinen die Inneren Planeten Merkur und Venus darzustellen, die immer in Horizont- bzw. Sonnennähe zu sehen sind. Denn diese umrunden die Sonne auf kleineren Kreisbahnen als die Erde. Daher sieht es von der Erde so aus als würden sie nur morgens oder abends seitlich der Sonne hin und her pendeln. Hingegen können die Äußeren Planeten Mars, Jupiter und Saturn außerhalb der Sonnenbahn, auf ihren kompletten Kreisbogen gesehen werden. Somit erreichen diese auch im Süden ihren Höchststand.
Alle Wandelsterne ziehen, ebenso wie Sonne und Mond, vor den hellen Sternen des Tierkreises ihre Bahnen. Und zwar jeweils in ihrer eigenen Zeit, Bewegung und Höhe entlang der gemeinsamen unsichtbaren Mittellinie, der Ekliptik.
Zwischen zwei großen Sternenkonstellationen vergingen genau 6 Stunden.
Je höher die rot markierten Sterne der Himmelsscheibe über der grünen waagrechten Horizontlinie stehen, umso nördlicher sind sie zugleich. Die senkrechte Linie stellt den Meridian dar; ein Großkreis, der von jedem Standort aus theoretisch die Erde durch beide Himmelspole umspannt.
Im südöstlichen Viertel der Bronzescheibe wurde scheinbar eine größtmögliche Ost-West-Konstellation verbildlicht. Ein Dreieck aus Arcturus / Bärenhüter, Antares / Skorpion und Altair / Adler, der soeben nahe dem Ostpunkt aufgegangen war. Zeitgleich stand ihm der letzte Stern des Wintersechsecks Procyon (1x) / Kleiner Hund nahe dem Westpunkt gegenüber, direkt vor seinem Untergang. Und über dem Nordpunkt standen die beiden Deichselsterne vom Kleinen und Großen Wagen übereinander, Polaris und Alkaid.
Im südwestlichen Himmelsgewölbe war ˈunser Wintersechseckˈ zu sehen; Capella / Fuhrmann, Pollux / Zwillinge, Aldebaran / Stier, Procyon (2x) / Kleiner Hund, Rigel / Orion und Sirius / Großer Hund. Zeitgleich befanden sich Vega / Leier im Nordpunkt und Deneb / Schwan etwas weiter westlich am Horizont. – Durch die jeweiligen dazugehörigen Sterne am nördlichen Horizontrand konnten die Positionen der Konstellationen exakt definiert werden.
Anhand dieser Dreieck- und der Sechseck-Konstellation war es dem Schöpfer der Himmelsscheibedamals möglich zwei gleichgroße Viertel des Himmelsgewölbes und eine Viertel Umdrehung desselben zu definieren.
Achtung: In stereographischen Computerkarten stimmen die Winkel der Sternbilder, aber dafür leider nicht die Abstände, die zum Rand hin immer größer werden. Das liegt daran, dass ein dreidimensionales Ereignis immer nur zweidimensional dargestellt werden kann.
Die hellblau markierten Sterne scheinen die Zirkumpolarsterne zu symbolisieren. Damals umkreisten sie einen sternenlosen Himmelsnordpol.
Wenn wir auf der senkrechten grünen Linie, dem Meridian, von allen hellblau markierten Sternen den Mittelpunkt ihrer Kreisbahnen ermitteln, müsste dies die Position des Nordpols (1x) auf der Himmelsscheibe von Nebra sein. Die Höhen und Abstände der ermittelten Bahnen ähneln den Angaben im Computerprogramm STELLARIUM. Für den 51. Breitengrad wären es die hellen Sterne: Vega auf der niedrigsten Umlaufhöhe von 2°, Alphekka 6°, Alderamin 11°, Etamin 17°, Polaris 29°, Alkaid 32°, η- Drache 33°, Kocab 44° und der Nordpol auf 51°. Zur Überprüfung dieser Angaben bietet sich ein Poster von der Himmelsscheibe von Nebra an: Poster DIN A2
In der Frühbronzezeit bildeten einige der zuvor ermittelten hellen Zirkumpolarsterne zweimal mit dem Nordpol nahezu gerade Linien, sogenannte Sternenzeiger.
Am auffälligsten waren die Sterne Vega, Etamin und η -Drache, als sie etwa zeitgleich im Meridian übereinander zu sehen waren. Dann erreichten exakt 6 Stunden später Polaris und Alkaid diese Position. Nach weiteren 6 Stunden stand erst der eine, dann der andere Sternenzeiger auf dem Kopf. Doch das ist noch nicht alles, denn zweimal definierten die Astronomen zeitgleich mit diesen Zeigern die zuvor beschriebenen Dreieck- und Sechseck-Konstellationen! Was für eine unglaubliche und einmalige Gesamtkonstellation war gefunden worden!!!
In rund 26.000 Jahren verschiebt sich scheinbar, vor allem durch die Taumelbewegung der Erdachse, der gesamte Himmel bis er wieder seine Ausgangsstellung erreicht. Und in dieser langen Zeit formieren sich vermutlich nur sehr selten, wenn überhaupt, zwei Sternenzeigern innerhalb von exakt 6 Stunden. Ausführlicher siehe: 6 Stunden = eine 1/4 Umdrehung
Der Mechanismus dieser perfekten Sternenuhr wurde von Astronomen in Mitteldeutschland entdeckt. Damit war diese Region besonders prädestiniert. Nun konnte man das Himmelsgewölbe in vier gleiche Teile unterteilen. Auch zwischen den Solstitien und Äquinoktien war jeweils eine Viertel-Umdrehung des Firmaments wahrzunehmen. In manchen Nächsten ließ sich sogar ein Dreiviertel des nächtlichen Bogenlaufs vieler Sterne beobachten. Eine Nacht offenbarte somit bis zu drei 6-stündige Zeiteinheiten, … Nun konnten Raum und Zeit nachprüfbar viele Male im Jahr exakt unterteilt und vermessen werden. Und sicherlich ermöglichten diese Beobachtungen weitere Rückschlüsse bezüglich der Himmelsmechanik und der Mathematik.
Außerdem stand gleichzeitig mit dem vierten Sternenzeiger der Stern Procyon / Kleiner Hund genau im Ostpunkt. In dem Fall handelt es sich um das größte von allen goldenen Sternenplättchen der Himmelsscheibe. Und somit lässt sich Procyon 3x verschiedenen Sternensymbolen zuordnen. Procyon zeigt den Verlauf des Himmelsäquator an
Mit an Sicherheit grenzender Wahrscheinlichkeit wurden alle Sterne der Himmelscheibe eindeutig interpretiert. Dies erfolgte durch das Auffinden versteckter Beziehungen zwischen den Sternenappliktionen und den anderen Symbolen. Alle Elemente des Bildprogramms sind miteinander verwoben. Da sich diese Interpretation leicht mit einem Computerprogramm nachvollziehen lässt, sieht man, dass sich die gewonnenen Aussagen gegenseitig bestätigen!
In der Abbildung finden Sie die heute gebräuchlichen Namen der interpretierten Sterne. Zudem wurden die verschiedenen Sternengruppen, die jeweils eine Eigenschaft verbindet, farblich gekennzeichnet. Insgesamt handelt es sich um einfache astronomische Vorgänge und vier Blickrichtungen. Alle Sterne symbolisieren die komplette Himmelsmechanik der Frühbronzezeit
Einerseits wurden in der Frühbronzezeit die Tierkreissterne (orange) an den vier extremen Auf- und Untergangsorten der Sonne beobachtet, wodurch Erkenntnisse zu den Jahreszeiten und zu den Bewegung der Planeten (grün) gewonnen werden konnten. Andererseits definierten die Zirkumpolarsterne (blau) einen sternenlosen Nordpol, dessen Position auf der Bronzescheibe später noch zweimal durch andere Hinweise eindeutig bestätigt wird. Und außerdem war eine große Dreieck- und eine Sechseck-Konstellation (rot) jeweils zeitgleich mit einigen der ermittelten Zirkumpolarsterne zu sehen, die übereinanderstehend mit dem Nordpol eine senkechte Linie, einen Sternenzeiger, bildeten. Zwischen diesen riesigen Konstellationen vergingen genau 6 Stunden oder, was für die damaligen Astronomen interessanter war, das gesamte Firmament vollzog einen Viertel-Umschwung.
Diese Interpretation zeigt, dass die Astronomen zur Zeit der 1. Herstellungsphase der Himmelsscheibe helle Sterne des ganzen Firmamentes kannten. Ebenso waren ihnen die unterschiedlichen Bewegungsabläufen der Gestirne und sogar die komplette Drehung des Himmelsgewölbes, in vier gleichgroßen Abschnitten, vertraut. Somit war es auch am Tage möglich, wenn die Sterne unsichtbar sind, deren ungefähre Lage zu ermitteln. Und schließletztlich könnte dadurch, unter anderem. die Bewegung der Sonne erst richtig erforscht worden sein.
Durch die weitere Nutzung der Seite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen
Die Cookie-Einstellungen auf dieser Website sind auf "Cookies zulassen" eingestellt, um das beste Surferlebnis zu ermöglichen. Wenn du diese Website ohne Änderung der Cookie-Einstellungen verwendest oder auf "Akzeptieren" klickst, erklärst du sich damit einverstanden.
LA PALMA WAR AUCH DIE INSEL DER KARTOGRAFEN -Interpretationen der Felsgravuren vom Lomo de La Fajana (El Paso) und vom Caboco de Belmaco (Villa de Mazo) als symbolische Darstellungen von detaillierten Landkarten. LA PALMA FUE TAMBIÉN LA ISLA DE LOS CARTÓGRAFOS- Interpretaciones de los grabados rupestres como representaciones simbólicas de mapas detallados.
Bisher war es niemandem gelungen die unterschiedlichen Symbole / Einritzungen einer Felsbildtafel ganz konkreten Landschaftselementen der Regionen zuzuordnen. Doch die neuen Forschungsergebnisse belegen dies offensichtlich und ganz leicht verständlich, so dass jeder die neuen Erkenntnisse schrittweise nachvollziehen kann.