Die Himmelsscheibe von Nebra stimmt mit heutigen Sternenkarten überein

Digitale Planetarien für jedermann

Heutzutage bieten moderne Computersysteme mehrere Möglichkeiten an, um die Ereignisse des dreidimensionalen Himmelgewölbes zweidimensional nachzubilden. Beispielsweise ist STELLARIUM ein kostenloses virtuelles Planetarium, das weltweit für Zeitpunkte in der Vergangenheit, Gegenwart oder Zukunft die Positionen aller Gestirne anzeigt und berechnet. Man kann die Projektionsart wählen und dann zwischen den Horizontansichten und Himmelspolen fließend wechseln. In der Regel verwende ich die stereographische Projektion. Bei diesen zweidimensionalen Darstellungen des Sternenhimmels stimmen die Winkel zwischen den Sternen, dafür werden aber die Strecken und Flächen zu den Kartenrändern immer größer, weil der bogenförmige Abstand zwischen den Sternen in geraden Linien gezeichnet wird. Das bedeutet die winkeltreue Form der Sternbilder wird gestreckt.

Variationen in der Darstellung von Sternenkarten

Generell zeigen Sternenkarten nur einen Ausschnitt der Himmelsansicht und dieser ist nur für einen kurzen Augenblick sowie für einen bestimmten Standort gültig. Denn einerseits dreht sich die Erde permanent um ihre eigene Achse, was an den Längengraden zu unterschiedlichen Tageszeiten führt. Und andererseits umrundet sie in einem Jahr die Sonne, wobei durch die Neigung der Erdachse an den Breitengraden variierende Tageslängen und Jahreszeiten spürbar sind. Diese Phänomene lassen sich natürlich auch am Sternenhimmel zu beobachten.

Zudem kann der Horizont als Kreis dargestellt werden, in dem Sterne aus dem gesamten Blickfeld abgebildet werden (Abbildung 1). Aber ebenso kann der Horizont auch als Linie wiedergegeben werden, über der nur die Gestirne einer bestimmten Blickrichtung gezeigt werden (Abbildung 2).

Abb. 1: In dieser Projektion des Himmelsgewölbes mit dem Horizont als Großkreis stimmen die Winkel zwischen den Sternen, aber die Abstände und Flächen werden leicht verzerrt. Außerdem muss man moderne Karten so drehen, dass die Richtungsangabe am unteren Rand der jeweiligen Blickrichtung entspricht.
Abb. 2: Diese Darstellung des Sternenhimmels mit dem Horizont in einer Seitenansicht eignet sich um in Blickrichtung Süden oder Norden die Umlaufbahnen und die Höhen einzelner Gestirne zu untersuchen. Jedoch werden hier die Abstände der Sterne zueinander sowie die Längen und Flächen der Sternbilder sehr verzerrt, aber die Winkel der Gestirne zueinander sind stimmig.

Verschiedene Sternenbeobachtungen werden auf der Himmelsscheibe in gesonderten Bereichen der Bronzescheibe abgebildet

Abb. 3: Die Himmelsscheibe von Nebra zeigt die Gestirne so, wie man sie jeweils in jeder der vier Himmelsrichtungen wahrnimmt.

Hingegen werden auf der Himmelsscheibe von Nebra Sternenkonstellationen von unterschiedlichen Zeitpunkten sowie aus gegenüberliegenden Blickrichtungen (die roten und blauen Sternemit dem Horizont als Linie) und aus verschiedenen Himmelsrichtungen (die orangenen Sterne an ihren Auf- und Untergangsortenim Horizontkreis) in nur einer Himmelskarte kombiniert. Dies hört sich kompliziert an, doch es gibt eindeutige Verknüpfungen und Hinweise zwischen einzelnen Symbolen und Sterngruppen, wodurch sich der gesamte Bildinhalt relativ einfach und schlüssig erschließen lässt.

Nachweislich haben die Astronomen der Himmelsscheibe von Nebra ebenfalls schon einen Kreis in 360°eingeteilt. Dieses ist auf der Bronzescheibe dadurch belegt, dass der Himmelsnordpol dem 51. Breitengrad entsprechend 51° über dem Horizont zu finden ist. Von ihm aus erstreckt sich bis zum Zenit ein 39°-Winkel und weiter in Richtung Süden folgen drei Mal 30°-Winkel. Mehr dazu: Die Kreisscheibe symbolisiert auch die Erde

Zwei Methoden um die Bewegungen der Gestirne zu ermitteln

Abb. 4: Ortsbestimmung eines Sterns durch Azimut (a) und Höhe (h) im Horizontsystem (Aschenbrenner, 1962: 7).

Da die Schöpfer der Himmelsscheibe den Horizont für die Ermittlungen der Sternenpositionen verwendete habe, nutze auch ich das sogenannte Azimutale Gradnetz. Hierbei misst man einerseits den Horizontalen Winkel Azimut (a) zwischen 0° bis 360° von dem schon früher gut auszulotendem Nordpunkt aus, bis zu einer Senkrechten, die durch den jeweiligen Stern verläuft. Und andererseits wird die Höhe (h) als Winkelabstand vom Horizont 0° bis zum Zenit auf +90° ermittelt;  bis zum Mittelpunkt des Himmelsgewölbes über dem Kopf des Beobachters. Diese Vermessungen können selbst mit einfachen Hilfsmitteln zu guten Ergebnissen führen.

Abb. 5: Ortsbestimmung eines Sterns durch Deklination (δ) und Rektaszension (α) im Äquatorsystem (Aschenbrenner, 1962: 8).

Beim Äquatorialen Koordinatensystem hingegen reicht der größte Höhenwinkel vom Himmelsäquator 0° bis zu +90° im Himmelsnordpol. Und der Winkelabstand auf dem rotierenden Himmelsäquator wird von Frühlingspunkt bis zu dem Großkreisberechnet, der durch den Nordpol und den entsprechenden Stern verläuft.
Dieses System blende ich ein, weil hier die Parallelkreise zum Himmelsäquator sehr gut die Bahnen aller Sterne veranschaulichen, aber es muss unbedingt das jeweilige Datum eingegeben werden.

Als ich 2009 mit meinen ersten Forschungen zu Himmelsscheibe von Nebra begann, musste ich den Frühlingspunkt etc. noch von Hand berechnen. Seitdem wurde die Software stetig weiterentwickelt und inzwischen lassen sich viele Hilfsmittel und Phänomene per Knopfdruck einblenden. — Ein ausgezeichnetes Programm und herzlichen Dank allen Entwicklern!


Bildnachweis
Abb. 4 + 5: Aschenbrenner, Klaus (1962). Blick zu den Sternen – Ein astronomisches Arbeitsbuch. Otto Salle Verlag. Frankfurt am Main – Hamburg.