Schlagwort-Archive: Zirkumpolarsterne

Die Mechanik des Sternenhimmels in der Frühbronzezeit

   Der Sternenhimmel / 1. Herstellungsphase
Sterne stellen die Extremstellungen des Tierkreises und die 5, mit bloßem Auge sichtbaren, Planeten dar
Zwischen der Konstellation des Sechsecks und des Dreiecks vergehen exakt 6 Stunden.
5 Zirkumpolarsterne der Himmelsscheibe gehören zu einer Sternenuhr.
Fünf Zirkumpolarsterne bilden zwei Sternenzeiger, die im Abstand von exakt 6 Stunden im Meridian stehen.
Die Sterne der Himmelsscheibe zeigen 2 jahreszeitliche Kostellationen, 8 Zirkumpolarsterne, Sterne des Tierkreises und 5 Planeten.

Die acht Zirkumpolarsterne

1. Phase Blickrichtung NordenAuf der Himmelsscheibe von Nebra liegt der unsichtbare Nordpol genau über dem Nordpunkt und seine Höhe ist durch den Mittelpunkt der Kreisbahn des äußersten, knapp über dem Horizont kreisenden, Zirkumpolarsternes (8) definiert. Von diesem Mittelpunkt aus, ziehen wir auch durch alle anderen sieben Zirkumpolarsterne Kreislinien.
Vergleichen wir nun die Abstände der (im maßstabgerechtem Poster der Himmelsscheibe) eingezeichneten Kreisbahnen, mit den im Computerprogramm >Stellarium< für 1950 v. Chr. angegebenen Höhenangaben der Sterne überm Horizont (Altitude), stellen wir fest, dass die Abstände ziemlich ähnlich sind. Nummerieren wir die acht Sterne entsprechend ihrer Entfernung vom Himmelspol, liegen die geraden Zahlen links und die Ungeraden rechts des Meridians.

alle ZirkumpolarsterneIn der Computer-Himmelskarte sehen wir, dass die Lage der Sterne niemals mit den Positionen der Sterne der Himmelsscheibe übereinstimmt. Aber die markierten Sterne überschreiten den Meridian jeweils in Paaren zeitlich nahe nacheinander, und zwar: 1 Kocab / Kl. Wagen + 4 Polaris / Kleiner Wagen, 3 Alkaid / Gr. Wagen + 2 η- Drache, 5 Etamin / Drache + 6 Alderamin / Kepheus, 7 Alphekka / nördliche Krone + 8 Vega / Leier.
Von den 4 Sternenpaaren überqueren zuerst die >ungeraden< Sterne 1, 3, 5 + 7 den Meridian; danach ihre Partnersterne 2, 4, 6 + 8, wie auf der Himmelsscheibe.

Folgende Reihenfolge und eventuell Höhenwinkel (Altitude) der Sterne sollte man gekannt haben, wenn man in der Frühbronzezeit vom 51. Breitengrad in den Süden reiste: Vega 2°; Alphekka 6°; Alderamin 11°; Etamin 17°; Polaris 29°; Alkaid 32°; η- Drache 33°; Kocab 44°; Nordpol 51°. Die Höhe des Nordpols über dem Horizont entspricht dem jeweiligen Breitengrad.
Ein Reisender brauchte sich nur die Höhe des jeweils untersten hellen Zirkumpolarsterns für seinen Heimatort zu merken. Denn dieser gehörte, wenn er nach Süden reiste, bald darauf nicht mehr zu den Zirkumpolarsternen.

Mehr dazu: Acht wichtige Zirkumpolarsterne

Zwei Sterne zur Nordpeilung

Zeitgleiche Kulminationen von Zirkumpolarsterne können auch zur exakten Ermittlung des wahren Nordens genutzt werden.

Astral hand to True NorthVon den acht Zirkumpolarsternen, die wir für der Himmelsscheibe von Nebra ermittelt haben, querten Alderamin (10,8°) und Kocab (43,6°), in ihren unteren Konjunktionen, fast gleichzeitig den Meridian.

Zudem war Alderamin in seiner oberen Kulmination am besten geeignet um den Zenit anzuzeigen. Er wäre somit als Heimatstern für die Region sehr geeignet gewesen. Denn mit zunehmender Entfernung, nach Süden oder Norden, eignet sich irgendwann ein anderer Zirkumpolarstern besser als Zenit- oder Heimatstern.

„… Die Ägyptologin Kate Spence von der University of Cambridge hat eine überraschend einfache Theorie vorgeschlagen, die – wenn sie stimmt – das genaue Jahr der Grundsteinlegung der Cheopspyramide liefern würde. In Nature beschreibt Spence ihre Idee: Den Schlüssel liefert ihr die bislang ebenfalls rätselhafte Ausrichtung der Pyramiden. Schon lange wundern sich die Archäologen darüber, wie exakt die pharaonischen Baumeister es verstanden, die Riesenbauten entlang der Nord-Süd-Achse auszurichten. So weicht die Westkante der Cheopspyramide weniger als ein Zwanzigstel Grad von der Richtung zum Nordpol ab. So genau ist kaum ein Magnetkompass – und der war im alten Ägypten noch lange nicht erfunden.
Die Architekten des Pharao mussten sich also an den Gestirnen orientieren.
Dabei nutzten sie die Tatsache, dass sich das Himmelszelt, von der Nordhalbkugel aus gesehen, in 24 Stunden einmal um den Himmelsnordpol dreht – jenen Punkt, auf den die nördliche Verlängerung der Erdachse zeigt. Heute ist es einfach, diesen Punkt zu finden, steht doch fast genau an dieser Stelle der hellste Stern des Kleinen Bären: Alpha Ursae Minoris, besser bekannt als Polarstern.
Die himmlische Richtung variiert mit irdischem Torkeln
Doch zur Zeit der alten Ägypter war das anders. Infolge einer langsamen Torkelbewegung der Erde wandert der Pol in 26 000 Jahren in einer großen Kreisbahn über den Himmel. Vor 4500 Jahren, als die pharaonischen Baumeister die Pyramiden “einzunorden” hatten, befand sich am Himmelspol kein mit bloßem Auge sichtbarer Stern. Die alten Ägypter hätten Norden allenfalls als die Mitte zwischen der westlichsten und der östlichsten Position bestimmen können, die ein polnaher Stern im Laufe einer Nacht erreicht. Solche Messungen waren mit altägyptischen Mitteln tatsächlich möglich.
Hätten aber die alten Ägypter wirklich diese Methode verwendet, behauptet Kate Spence nun, dann wäre diese sicher mit der Zeit immer weiter verbessert worden – die jüngeren Pyramiden müssten also genauer eingenordet sein als die älteren. In Wirklichkeit ist es anders: Die große Pyramide des Cheops ist nicht nur exakter ausgerichtet als die seiner Vorgänger, sondern auch als die seiner Nachfolger Chephren und Mykerinos.
Seltsamerweise variiert die Genauigkeit exakt mit der Torkelbewegung der Erdachse. Kate Spence glaubt nicht an Zufall. Sie vermutet, dass die Ägypter nicht nur einen Stern beobachteten, sondern zugleich zwei: Die Sterne Beta Ursae Minoris (im Sternbild Kleiner Bär) und Zeta Ursae Majoris (im Großen Bären) lagen damals ungefähr auf einer Linie mit dem nördlichen Himmelspol – Norden war also dort, wo die Verlängerung ihrer Verbindungslinie in einer Nacht senkrecht auf den Horizont traf.
Doch nur im Jahre 2467 vor Christus lag der Himmelspol genau auf der Linie beider Sterne. Davor und danach verfehlten die Baumeister mit dieser Methode die exakte Nordausrichtung mit wachsendem Abstand zum Jahr 2467 vor Christus wird dieser Fehler immer größer. Aus der Abweichung der Cheopspyramide von der Nord-Süd-Achse kann man daher berechnen, wann genau sie eingenordet wurde: Im Jahr 2478 vor Christus – 70 Jahre später als bisher angenommen.“ [1]

Der Ägyptologe Robert G. Bauval veröffentlichte zu dieser Theorie: Er habe schon vor Kate Spence die Idee gehabt, dass der Kleine und Große Wagen zum Bau der Großen Pyramiden genutzt wurden. Für ihn waren sie außerdem noch die Zeiger einer Sternenuhr. Denn zusätzlich zu Kocab und Mizar, ging etwa 26° südlich vom Ostpunkt, zeitgleich der Stern Rigel aus dem Orion auf und diese große Konstellation sei eine Sternenuhr. Die Ägypter konnten an dem nördlichen Sternenzeiger erkennen, wann der Stern Zeta Orionis >geboren< wurde. [2]

An dieser Stelle fällt auf, dass auf der Himmelsscheibe der versetzte Stern im Ostpunkt und auch der goldene Stern, für den wir Polaris ermitteln konnten, die beiden einzigen größeren Sternenscheiben sind. Dies ist vielleicht ein versteckter Hinweis sein. Denn wenn Polaris die obere, südliche Kulmination erreichte war zeitgleich, diesmal genau im Osten, wieder einmal Procyon aus dem Wintersechseck zu sehen.

______________________________

[1] www.zeit.de/2000/47/cheops%27_Kompass/seite-3  Ulf von Rauchhaupt
[2] www.robertbauval.co.uk The starclock of URSA MAJOR AND URSA MINOR

Das horizontale Koordinatensystem der Frühbronzezeit

Aus der vorliegenden erweiterten Interpretation zur Himmelsscheibe von Nebra kommen wir zu folgender Schlussfolgerung:

Schon die Astronomen der Frühbronzezeit beobachteten die Auf- und Untergänge einiger heller Sterne des Tierkreises. Sie kannten den Bogenlauf des Procyon, der parallel zum Himmelsäquator, etwa die Himmelsphäre halbierte. Außerdem haben sie durch gleichzeitig kulminierende Sterne den Nordpol und den Nordpunkt genau bestimmen können und an der fiktiven Verbindungslinie, dem Meridian, die Höhe der Zirkumpolarsterne über dem Horizont vermessen. Ebenso werden sie die Höhenwinkel der Sterne über dem Südpunkt abgezirkelt haben, was die Darstellung mit der unsichtbaren Horizontlinie durch die Kreisscheibe, mit den 3x 30 Gradsegmenten in Richtung Süden, vermuten lässt. – Für die goldenen Kreiselemente haben sie vermutlich eine Art Zirkel verwendet, so exakt sind sie.

Demnach können wir davon ausgehen, dass sie auch einen Kreis am Boden in 30°-Winkel eingeteilt haben könnten, um ein einfaches Kreisobservatorium zu erhalten. Die lotrechte Stellung eines Sterns wurde an dessen Rand vermerkt. Der Norden war der Nullpunkt. Und der ideale Zeitpunkt, um jeweils einen Viertel Himmelsausschnitt zu untersuchen, war wenn einer der vier Sternenzeiger über dem Nordpunkt stand.
Also konnten sie, wie wir, die Lage eines Sternes bestimmen, indem sie den Abstand vom Nordpunkt (= Azimut; heutzutage aber vom Südpunkt aus) und die Höhe über dem Horizont (= Altitude) als Winkel ausmaßen. Das entspricht den Koordinaten unseres Horizontalen Koordinatensystems.